
COMPleib: COnstrained Matrix–optimization Problem library – a collection
of test examples for nonlinear semidefinite programs, control system design and

related problems
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Abstract. The purpose of this paper is to describe a collection of test examples which can be used for testing
and comparing algorithms for nonlinear semidefinite programs (NSDPs), bilinear matrix inequality (BMI) problems,
(linear) control system design and related problems. COMPleib consists of examples collected from the engineering
literature and real–life sources for linear time–invariant (LTI) control systems. It contains models from real world
engineering applications as well as idealized or pure academic versions of problems similar to those arising in practice.
This collection may serve directly for test purposes in the construction of new tools for LTI control system design,
i. e. algorithms for model reduction, Riccati (Lyapunov) equation solvers, tools for H∞, H2 or mixed H2/H∞

controller synthesis.
On the other hand, it is well–known, that a very wide variety of control synthesis problems can be reformulated

as constrained matrix optimization problems. In example, the design of a low–order output feedback controller for a
LTI system is an important instance of a difficult and in general non–convex, nonlinear control problem which can be
transformed into a (non–convex) nonlinear semidefinite program. We present NSPD as well as BMI formulations of
several fixed–order synthesis problems which can be formed by using the data of COMPleib . Then, after forming the
individual NSDP or BMI problem from COMPleib , it is straightforward to use COMPleib as a test set environment
for (special) NSDP or BMI solvers like IPCTR [23], SSDP [12] or PENBMI [18]. Moreover, as a byproduct, we
explain the usage of the test collection as a tool for testing and comparing linear SDP solvers like SeDuMi [27] or
SDPT3 [29].

Finally, COMPleib is also an interesting test environment for algorithms computing (optimal) ǫ–pseudospectral
abscissas or complex stability radi of (non–symmetric) matrices of the form A + BFC, where A, B, C are given
matrices and F denotes the unknown matrix variable (see, i. e. [9], [7], [10]).

Key Words. collection of test examples; constrained matrix optimization problem; nonlinear semidefinite

program; bilinear matrix inequality; output feedback control; control system design; pseudospectral abscissa

AMS subject classification.

1. Data structure in COMPleib and formulation of the (closed loop) feedback control
problem . The current version of COMPleib 1.0 consists of more than 120 examples collected from
the engineering literature and real–life (engineering) applications for LTI control systems. A typical
instance of such a control system can be stated as follows. Consider a LTI plant of order nx with
state space realization:

ẋ(t) = Ax(t) + B1w(t) + Bu(t),
z(t) = C1x(t) + D11w(t) + D12u(t),
y(t) = Cx(t) + D21w(t),

(1.1)

where x ∈ IRnx , u ∈ IRnu , y ∈ IRny , z ∈ IRnz , w ∈ IRnw denote the state, control input, measured
output, regulated output, and noise input, respectively. The current version of COMPleib consists
simply of the data matrices A ∈ IRnx×nx , B1 ∈ IRnx×nw , B ∈ IRnx×nu , C1 ∈ IRnz×nx , D11 ∈ IRnz×nw ,
D12 ∈ IRnz×nu , C ∈ IRny×nx and D21 ∈ IRnx×nw . In particular, all 124 test problems in COMPleib

1.0 are coded and stored in standard MATLAB matrix format. We have decided to use this format,
since the main advantage of MATLAB is the platform independence. The heart of COMPleib is
the MATLAB function file COMPleib.m. In a MATLAB environment, the data of the individual
test example of COMPleib can be accessed by calling the MATLAB function therein. For example,
in MATLAB, the command

>> [A,B1,B,C1,C,D11,D12,D21,nx,nw,nu,nz,ny] = COMPleib(’AC1’);

returns the real data matrices A, B1, B, C1, C, D11, D12 and D21 of (1.1) as well as the
integers (dimension parameters) nx, nw, nu, nz and ny of the COMPleib example AC1. To-
gether with the MATLAB function file COMPleib.m, COMPleib is provided with several binary
MATLAB data files (MAT-files) which contains the data matrices of some individual (large)
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test examples. In particular, release 1.0 of COMPleib contains also the following MAT-files:
ac10.mat, ac13 14.mat, ac18.mat, bdt2.mat, cbm.mat, cdp.mat, cm1.mat – cm6.mat (6 files),
dlr2 3.mat, he6.mat, he7.mat, hf2d1.mat – hf2d18.mat (18 files), ih.mat, iss1 2.mat, je1.mat,
je2 3.mat, lah.mat, tl.mat. Note, the name of the MAT-file corresponds to the example name in
COMPleib . For more details we refer to the COMPleib user manual [22]. Moreover, more infor-
mation on the individual examples in COMPleib are given in the companion paper [21] (see also
Section 4).

Depending on the control design goals, it is possible to derive particular constrained matrix–
optimization problems from the specific control synthesis problem. Thus, the given data in
COMPleib can be used as a benchmark collection for a very wide variety of algorithms solv-
ing matrix–optimization problems; in example, it can be used for testing solvers for nonlinear
semidefinite programs (NSDPs), bilinear matrix inequality (BMI) problems, linear SDPs, Ric-
cati or Lyapunov equations, respectively. Moreover, as a byproduct, COMPleib is also interesting
for testing procedures for other (related) matrix problems. In example, the minimization of the
ǫ–pseudospectral abscissa of A + BFC, defined as the largest real part of all elements of the
pseudospectrum of A + BFC, for a fixed ǫ ≥ 0 and unknown F ∈ IRnu×ny . Another instance is
the computation of complex stability radius of the matrix A + BFC (see, i. e. [9], [7], [10] and
[30]). A description of some of these constrained matrix optimization problems will be given in
the paragraph below.

Typically, we assume that the triple (A, B, C) is stabilizable and detectable (see, i. e. [32, p. 51
and p. 52]). For a given integer 0 ≤ nc ≤ nx consider the nc–th reduced order (output feedback)
control (ROC) law:

ẋc(t) = Acxc(t) + Bcy(t),
u(t) = Ccxc(t) + Dcy(t),

(1.2)

where xc ∈ IRnc denotes the state of the dynamic ROC law and the controller matrices Ac ∈ IRnc×nc ,
Bc ∈ IRnc×ny , Cc ∈ IRnu×nc , Dc ∈ IRnu×ny are not known, respectively. We collect the unknown
control variables in the gain matrix F , defined by

F =

[

Ac Bc

Cc Dc

]

∈ IR(nc+nu)×(nc+ny) (1.3)

Note, depending on the order nc of the control law (1.2), we obtain the following classifications:
(i) if nc ≡ 0 then F ≡ Dc and (1.2) coincides with the so–called static output feedback (SOF)

control law

u(t) = Fy(t), F ∈ IRnu×ny . (1.4)

If 0 < nc < nx (usually we have nc ≪ nx) with nc fixed, then F is given by (1.3) and (1.2)
is the so–called fixed output feedback ROC law. In general, the corresponding control
design problems are instances for which no convex formulation has been found. They can
be only transformed to non–convex NSDPs, or, equivalently, to non–convex BMI problems.

(ii) if, in addition to (i) in case of nc ≡ 0, we set C = Inx
and D21 = 0 in (1.1), i. e. y = x,

then (1.2) coincides with the so–called static state feedback (SF) control law

u(t) = Fx(t), F ∈ IRnu×nx . (1.5)

In this case, it is always possible to reformulate the underlying control design problems to
linear (and, thus convex) SDPs.

(iii) if nc ≡ nx, (1.2) is a so–called full–order dynamic output feedback control law, and, if, in
addition C = Inx

and D21 = 0 in (1.1), (1.2) denotes a full–order dynamic state feedback
controller. Typically, when nc ≡ nx, the usual optimal control design problems are also
rewritable to convex matrix optimization problems, i. e. to linear SDPs.
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The reduced order controller synthesis problem can be always transformed to a static controller
synthesis problem by augmentation of the plant state x with the controller state xc (see, i. e. [28]).
In particular, we redefine the state, control and measurement variables by their augmented coun-
terparts

x(t) :=

[

x(t)
xc(t)

]

, u(t) :=

[

ẋc(t)
u(t)

]

, y(t) :=

[

xc(t)
y(t)

]

, (1.6)

and the corresponding dimensions by nx := nx + nc, ny := ny + nc, nu := nu + nc, respectively.
Moreover, we redefine the state space data by their augmented counterparts as follows:

A :=

[

A 0
0 0nc

]

, B :=

[

0 B
Inc

0

]

, C :=

[

0 Inc

C 0

]

, B1 :=

[

B1

0

]

, D21 :=

[

0
D21

]

,

C1 :=
[

C1 0
]

, D12 :=
[

0 D12

]

, D11 := D11.
(1.7)

If we replace the system quantities in (1.1) by the augmented counterparts and substitute the ROC
law (1.2) into the augmented state space plant, then we get the closed loop system in SOF form:

Σcl

{

ẋ(t) = A(F )x(t) + B(F )w(t),
z(t) = C(F )x(t) + D(F )w(t),

(1.8)

where

A(F ) = A + BFC, B(F ) = B1 + BFD21, C(F ) = C1 + D12FC, D(F ) = D11 + D12FD21

are the (augmented) closed loop matrices, respectively.

2. Constrained matrix–optimization problems . In this section we describe several con-
strained matrix–optimization problems which can be built by using the data matrices defined in
COMPleib . We describe several feedback control design problems and state some of the corre-
sponding constrained matrix optimization problems. Depending on the particular design goals, it
is possible to derive corresponding (non–convex) NSDPs or BMI–problems or linear SDPs, respec-
tively. Moreover, from the data matrices in COMPleib it is also possible to formulate algebraic
Riccati or Lyapunov equations which arise in many feedback control design problems. In the fol-
lowing subsections we describe and collect several meaningful feedback design control problems
that can be formulated as constrained matrix optimization problems. Note, however, there are
much more contributions in the control literature of control problems leading to NSDPs or BMIs.
Thus, our list is far from being exhaustive. In example, fixed order output feedback design prob-
lems are typical examples of (in general) non–convex and nonlinear matrix optimization problems.
Generally, these problems can be formulated as nonlinear semidefinite programs, or, equivalently,
as bilinear matrix inequality problems. Note, these problems are not only nonlinear, they are also
non–convex and thus sometimes more difficult to solve than convex matrix optimization problems.
For an interesting classification of the difficulty of such problems (in particular of BMIs), we refer
the interested reader to the discussion stated in [14, Section 1].

On the other hand, in example, considering state feedback control design problems, it was
noticed in [3] that a clever change of variables in the original bilinear matrix optimization problems
leads to linear SDPs. The formulation of several control problems that can be formulated as linear
matrix inequality (LMI) problems are stated in [5] and [13]. Finally, note, most of the linear (and
therefore convex) SDPs collected in the last two references have at least a BMI counterpart. Some
of them are stated below.

2.1. NSDP and BMI formulation of several output feedback reduced order design
problems . In this paragraph, we describe several output feedback reduced order control design
problems and state the corresponding NSDP as well as BMI–problem formulation. Particularly, we
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suppose that 0 ≤ nc < nx is fixed. In this case, the corresponding constrained matrix–optimization
problems are non convex and nonlinear. We focus our main discussion on the following instances:
ROC–H2, ROC–H∞ and ROC–H2/H∞, respectively. The concepts of H∞ norm and H2 norm are
well known (see, i.e., [32]). Therefore, we will omit detailed discussion and content ourselves with
starting the following definitions for reference. Assume the reduced order control law (1.2) is fixed
such that the closed loop system (1.8) is internally stable, i.e., the real parts of the eigenvalues of
A(F ) are all strictly negative. In this case, A(F ) is called Hurwitz. Due to the Lyapunov theorem
(see, i.e., [26, Theorem 11, §4]) there is an elegant representation of the Hurwitz property. It
reduces the stability problem to an algebraic problem.

Theorem 2.1 (Lyapunov Theorem). Let A ∈ IRnx×nx , B ∈ IRnx×nu and C ∈ IRny×nx be
given, then the following are equivalent:

(i) There exists F ∈ IRnu×ny such that A(F ) = A + BFC is Hurwitz.
(ii) For each W ∈ IRnx×nx , there exists F ∈ IRnu×ny such that the Lyapunov equation

A(F )T X + XA(F ) + W = 0 (2.1)

has a unique solution X ∈ IRnx×nx . If W ≻ 0 (W � 0), then X ≻ 0 (X � 0).
(iii) There exist F ∈ IRnu×ny and V ∈ Snx such that

Fs := {F ∈ IRnu×ny | ∃ V ∈ Snx : A(F )T V + V A(F ) = −I ≺ 0, V ≻ 0} 6= ∅, (2.2)

where Fs denotes the set of stabilizing ROC gains F .
Obviously, there exist other equivalent definitions of Fs. In particular, (2.2) is also equivalent

to the matrix conditions:

∃ F ∈ IRnu×ny , V ∈ Snx : A(F )T V + V A(F ) + I = 0, V ≻ 0. (2.3)

2.1.1. Optimal fixed order H2 synthesis: NSDP and BMI–problem formulation .
The most basic optimal control problem is the following H2 design problem (see i.e. [19], [28] and
the references therein):

Optimal fixed order H2 synthesis: Suppose that D11 = 0 and D21 = 0. Given real matrices
A, B, C, B1, C1, D12 and an integer 0 ≤ nc < n, find a controller gain F of order nc such that the
closed loop matrix A(F ) is Hurwitz and the H2 norm of the closed loop system (1.8) is minimal.

If A(F ) is Hurwitz, it is well known that the H2 norm of the closed loop system (1.8) is given
by

||Σcl||2H2
= 〈Q, C(F )T C(F )〉 = Tr(C(F )QC(F )T ), (2.4)

where Q ∈ Snx satisfies the Lyapunov equation

A(F )Q + QA(F )T + B1B
T
1 = 0. (2.5)

Note, due to the assumption D11 = 0 and D21 = 0, we have D(F ) = 0 and B(F ) = B1. Hence, us-
ing Theorem 2.1, (2.3) and (2.4), the optimal fixed order output feedback H2 problem is equivalent
to the following nonlinear semidefinite program:

minF,Q,V Tr((C1 + D12FC)Q(C1 + D12FC)T )

s. t. (A + BFC)Q + Q(A + BFC)T + B1B
T
1 = 0,

(A + BFC)V + V (A + BFC)T + I = 0, V ≻ 0.

(2.6)

Note, it is essential to use different Lyapunov variables Q and V . Here, an optimal Q corresponds
with the solution of the Lyapunov equation (2.5), while an optimal V together with an optimal
F satisfies the stability constraints (2.3). At an optimal point (F, L, V ) of (2.6), we can only
guarantee that, in general, B(F )B(F )T is positive semidefinite and Q � 0. Hence, it is very likely,
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that the set of optimal solutions of (2.6) is empty if we would use the same matrix variable for the
stability constraint (2.3) and the Lyapunov matrix equation (2.5).

The bilinear dependence of the constraints on the free controller parameter F and the variables
Q, V make the problem non–convex. The SDP–constraints A(F )T V + V A(F ) = −I ≺ 0, V ≻ 0
ensure the internal stability of the closed loop system (1.8), i. e. A(F ) is Hurwitz. Due to the
cone constraint, (2.6) is a non convex and nonlinear semidefinite program, the so–called optimal
H2–NSDP. If the solution set of (2.6) is not empty, then F solves the optimal fixed order H2

synthesis problem.
An equivalent formulation of (2.6) is the following NSDP:

minF,P,W Tr(PB1B
T
1 )

s. t. (A + BFC)T P + P (A + BFC) + (C1 + D12FC)T (C1 + D12FC) = 0,
(A + BFC)T W + W (A + BFC) ≺ 0, W ≻ 0.

(2.7)

Due to a quadratic term in F , the NSDPs (2.6) and (2.7) are nonlinear and not only bilinear
constrained matrix–optimization problems. For deriving an equivalent BMI formulation of (2.6),
in addition, we should suppose that B1B

T
1 ≻ 0. If this is not satisfied (i. e. in COMPleib ), one

can use B1B
T
1 + ǫInx

instead of B1B
T
1 for a fixed small positive scalar ǫ. Note, this assumption is

necessary for guaranteeing that Q ≻ 0 makes sense. Then, introducing a further matrix variable
X ∈ IRnz×nz and applying the Schur–Complement–Lemma (see, i. e. [5], [16, Theorem 7.76], [19,
Lemma 2.2.1]) to the nonlinear matrix inequality (NMI)

X − C(F )QC(F ) = X − C(F )QQ−1QC(F )T � 0,

we get the following equivalent BMI–problem formulation of (2.6):

minF,Q,X Tr(X)

s. t. (A + BFC)Q + Q(A + BFC)T + B1B
T
1 � 0, Q ≻ 0

[

X (C1 + D12FC)Q
Q(C1 + D12FC)T Q

]

� 0.

(2.8)

Note, (2.8) is bilinear in F and Q, but it is still non convex due to the bilinearity of the free matrix
variables.

2.1.2. Optimal fixed order H∞ synthesis: NSDP and BMI–problem formulation .
H∞ synthesis is an attractive model–based control design tool and it allows incorporation of model
uncertainties in the control design (see i. e. the pioneering paper of Zames [31]). In this paragraph,
we reformulate the optimal fixed order H∞ problem (for the ROC system (1.8)) to a general NSDP
and also state an equivalent BMI formulation of this problem class (see, i.e., [15], [19]).

Let a scalar γ > 0 be given. Assume that A(F ) is Hurwitz and the H∞ norm of (1.8) is less
than γ, i. e. ||Σcl||H∞

< γ. Then it is a standard fact (see i. e. [19, Corollary 2.1.8] or [33])
that this is equivalent to the existence of a unique matrix P ∈ Snx with P � 0 and F ∈ IRnu×ny

satisfying the (continuous time) algebraic Riccati equation

A(F )T P + PA(F ) + γ−1C(F )T C(F ) + γ−1M(F, P, γ)R(F, γ)−1M(F, P, γ)T = 0, (2.9)

and

R(F, γ) := Inw
− γ−2D(F )T D(F ) ≻ 0, (2.10)

where R : IRnu×ny ×IR → Snw and the matrix function M : IRnu×ny ×Snx ×IR → IRnx×nw is defined
as

M(F, P, γ) := PB(F ) + γ−1C(F )T D(F ). (2.11)
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Moreover, the perturbed system matrix Ã(F, γ) is Hurwitz, where the (in general) non–symmetric
matrix function Ã : IRnu×ny × Snx × IR → IRnx×nx is given by

Ã(F, P, γ) := A(F ) + γ−1B(F )R(F, γ)−1M(F, P, γ)T . (2.12)

Therefore, we formulate the optimal fixed order H∞ problem as follows:
Optimal fixed order H∞ synthesis: Given real matrices A, B, C, B1, C1, D11, D12, D21 and an

integer 0 ≤ nc < nx, find a controller gain F of order nc, P ∈ Snx and γ > 0 such that for
minimal γ, the triple (F, P, γ) satisfies the Riccati equation (2.9), R(F, γ) ≻ 0, P � 0 and the
Hurwitz property of Ã(F, P, γ).

Using Theorem 2.1, (2.9) and (2.10), the optimal fixed order H∞ control problem is equivalent
to the following non–convex and nonlinear semidefinite program:

minF,P,W,γ γ

s. t. A(F )T P + PA(F ) + γ−1C(F )T C(F ) + γ−1M(F, P, γ)R(F, γ)−1M(F, P, γ)T = 0,

Ã(F, P, γ)T W + WÃ(F, P, γ) + I = 0, R(F, γ) ≻ 0 W ≻ 0, P � 0, γ > 0.
(2.13)

This version of the so–called H∞–NSDP is highly nonlinear in the free variables. The advantage of
this formulation is the usage of nonlinear matrix equations (one Riccati and one Lyapunov equation)
instead of difficult NMIs and ”simple linear non–negativity” conditions on some of the variables
plus the biquadratic matrix inequality R(F, γ) ≻ 0. In example, the positive definite condition
on W which models together with the Lyapunov matrix equation the Hurwitz property of the
perturbed system matrix Ã(F, P, γ) and the positive semidefinite condition on P . In particular, an
interior point type solver can exploit the inherent structure of the H∞–NSDP (2.13) (see, i. e. [23],
[24], [25], [19]), which is not possible if we use the strict bounded real lemma (see, i. e. [5], [33])
for deriving an equivalent optimal BMI version of the H∞–NSDP (see, i. e. [15]).

Using the strict bounded real lemma, one can show that the existence of F and P � 0 satisfying
(2.9), (2.10) and (2.12) is equivalent to the existence of F ∈ IRnu×ny and X ∈ Snx with X ≻ P � 0
satisfying the strict Riccati inequality

A(F )T X + XA(F ) + γ−1C(F )T C(F ) + γ−1M(F, X, γ)R(F, γ)−1M(F, X, γ)T ≺ 0, (2.14)

and R(F, γ) ≻ 0, where the matrix functions R(F, γ) and M(F, X, γ) are defined as in (2.10) and
(2.11), respectively. Then, applying the Schur–Complement–Lemma on (2.14) and (2.10) twice, we
obtain the following BMI version of the optimal fixed order H∞ synthesis problem (see, i. e. [15,
Problem 2]):

min
F,X,γ

γ s. t. X ≻ 0, γ > 0,





A(F )T X + XA(F ) XB(F ) C(F )T

B(F )T X −γ Inw
D(F )T

C(F ) D(F ) −γ Inz



 ≺ 0. (2.15)

Due to the bilinearity of the free matrix variables F and X , the BMI–formulation of the ROC–
H∞ is also a non–convex and nonlinear constrained matrix–optimization problem. The major
drawback of the BMI–formulation (2.15) is the bilinear matrix inequality. As far as we know, it
is not possible to exploit the inherent structure of this BMI–problem in an optimization solver.
Moreover, note, the left hand side of the matrix inequality lies in Snx+nw+nz .

Assuming D11 = 0 and D21 = 0, i. e. there is no sensor noise and no noise acting on the
regulated output, then the H∞–NSDP (2.13) reduces to

minF,P,W,γ γ

s. t. A(F )T P + PA(F ) + γ−1C(F )T C(F ) + γ−1PB1B
T
1 P = 0, P � 0

(A(F ) + γ−1B1B
T
1 P )T W + W (A(F ) + γ−1B1B

T
1 P ) + I = 0, W ≻ 0, γ > 0.

(2.16)
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Note, in this case, we have D(F ) = 0 and B(F ) = B1. Thus, R(F, γ) ≡ Inw
and M(F, P, γ) ≡ PB1,

respectively.
In the last part of this paragraph, we state the following equivalent (dual) versions of the

H∞–NSDPs (2.13), (2.16) and the H∞–BMI formulation (2.15). An alternative formulation of
(2.13) is the following NSDP:

minF,Q,V,γ γ

s. t. A(F )Q + QA(F )T + γ−1B(F )B(F )T + γ−1M̂(F, Q, γ)T R̂(F, γ)−1M̂(F, Q, γ) = 0,

Â(F, Q, γ)V + V Â(F, Q, γ)T + I = 0, R̂(F, γ) ≻ 0 V ≻ 0, Q � 0, γ > 0,
(2.17)

where

R̂(F, γ) := Inz
− γ−2D(F )D(F )T , M̂(F, Q, γ) := C(F )Q + γ−1D(F )B(F )T

and

Â(F, Q, γ) := A(F ) + γ−1M̂(F, Q, γ)T R̂(F, γ)−1C(F ).

If D11 = 0 and D21 = 0, (2.17) reduces to

minF,Q,V,γ γ

s. t. A(F )Q + QA(F )T + γ−1B1B
T
1 + γ−1QC(F )T C(F )Q = 0, Q � 0

(A(F ) + γ−1QC(F )T C(F ))V + V (A(F ) + γ−1QC(F )T C(F ))T + I = 0, V ≻ 0, γ > 0,
(2.18)

which in turn is equivalent to (2.16). Finally, the following BMI–problem

min
F,Y,γ

γ s. t. Y ≻ 0, γ > 0,





A(F )Y + Y A(F )T Y C(F )T B(F )
C(F )Y −γ Inz

D(F )
B(F )T D(F )T −γ Inw



 ≺ 0. (2.19)

is equivalent to (2.15).

2.1.3. Optimal fixed order H2/H∞ synthesis: NSDP and BMI–problem formula-
tion . A combination of H2 and H∞ design objectives leads to mixed H2/H∞ synthesis (see, i.e.,
[2], [20], [17]). For simplifying the representation of the corresponding NSDP and BMI formula-
tion, respectively, during the whole subparagraph, we assume that D11 = 0 and D21 = 0. Due
to this simplifying assumption, the regulated output of the closed loop system (1.8) is not driven
(directly) by a noise input signal. Therefore, the H2 norm of Σcl is finite and given by (2.4), if
A(F ) is Hurwitz. Note, for simplifying our presentation, we have assumed (implicitly) that the
representation of z and y is noise free. For the more general case, one alternative is to consider two
different noise signals, i.e., w0, w1, and transfer functions, i. e. T0, T1, of the closed loop system.
In example, T0 maps w0 into z and defines the H2 norm. Similarly, T1 maps w1 into z and is used
for describing the H∞ norm bound (see, i.e., [2], [20], [17]).

The design goals are the following: For a given positive scalar γ, the H∞ norm of the closed
loop system Σcl is less than γ, A(F ) is Hurwitz and the H2 norm of Σcl is minimal. Formally, we
have:

Optimal fixed order H2/H∞ synthesis: Given real matrices A, B, C, B1, C1, D11, D12, D21 with
D11 = 0, D21 = 0, a scalar γ > 0 and an integer 0 ≤ nc < n, find a controller gain F of order nc,
such that A(F ) is Hurwitz, ||Σcl||H∞

< γ and ||Σcl||H2
is minimal.

By the discussion of the H∞ problem, we already know that A(F ) is Hurwitz and ||Σcl||H∞
< γ

if and only if there exist F and Q � 0 satisfying the (simplified) Riccati equation

A(F )Q + QA(F )T + γ−1B1B
T
1 + γ−1QC(F )T C(F )Q = 0 (2.20)
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such that A(F ) + γ−1QC(F )T C(F ) is Hurwitz (compare, i. e. the definition of the H∞–NSDP
(2.18)). On the other hand, the H2 norm of Σcl is given by (2.4) and (2.5), if A(F ) is Hurwitz.
Obviously, a common solution which fulfills both equations may not exists. One way out of this
dilemma is to introduce a further matrix variable Q0 which satisfies the Lyapunov equation and
enter the objective function of the corresponding NSDP. Another possibility is due to the following
Lemma, which is similar to [19, Lemma 4.1.1] (see also the discussion in [20, Section 2] and the
references therein).

Lemma 2.2. Consider the closed loop system Σcl and let γ > 0 be given. Suppose A(F )
is Hurwitz. If there exists a pair (F, Q) satisfying (2.20) such that A(F ) + γ−1QC(F )T C(F ) is
Hurwitz, then

a) ||Σcl||H∞
< γ

b) 0 � Q0 � Q, where Q0 � 0 satisfies (2.5). Consequently, we have

||Σcl||2H2
= Tr(C(F )Q0C(F )T ) ≤ Tr(C(F )QC(F )T ). (2.21)

By Lemma 2.2, the H∞ constraint is automatically enforced when a solution to the Riccati
equation (2.20) exists and it yields an upper bound to the H2 norm of Σcl. This motivates the
following (simplified) version of the optimal fixed order H2/H∞–NSDP (see also (2.6) and (2.18)):

minF,Q,V Tr((C1 + D12FC)Q(C1 + D12FC)T )

s. t. A(F )Q + QA(F )T + γ−1B1B
T
1 + γ−1QC(F )T C(F )Q = 0, Q � 0

(A(F ) + γ−1QC(F )T C(F ))V + V (A(F ) + γ−1QC(F )T C(F ))T + I = 0, V ≻ 0.
(2.22)

By using a dualization argument, the H2/H∞–NSDP (2.22) is equivalent to the following nonlinear
semidefinite program (see also (2.7) and (2.16)):

minF,P,W Tr(PB1B
T
1 )

s. t. A(F )T P + PA(F ) + γ−1C(F )T C(F ) + γ−1PB1B
T
1 P = 0, P � 0

(A(F ) + γ−1B1B
T
1 P )T W + W (A(F ) + γ−1B1B

T
1 P ) + I = 0, W ≻ 0.

(2.23)

By replacing the Riccati equations in the NSDPs (2.22) and (2.23), respectively, and using the
same arguments as in the previous two paragraphs, it is straightforward to derive the following
BMI formulations of the H2/H∞–NSDPs. In particular, the NSPD (2.22) is equivalent to the fixed
order H2/H∞–BMI problem (cf. (2.8) and (2.19)):

minF,Q,X Tr(X)

s. t.

[

A(F )Y + Y A(F )T + γ−1B1B
T
1 Y C(F )T

C(F )Y −γ Inz

]

≺ 0,

[

X C(F )Y
Y C(F )T Y

]

� 0, Y ≻ 0.

(2.24)

Moreover, the NSDP (2.23) can be transformed to the following equivalent BMI problem (see also
(2.15):

minF,X Tr(XB1B
T
1 )

s. t. X ≻ 0,





A(F )T X + XA(F ) XB1 C(F )T

BT
1 X −γ Inw

0
C(F ) 0 −γ Inz



 ≺ 0.
(2.25)

2.2. SDP formulation of state feedback control design instances . For some special
cases (i. e. state feedback control design), it is well known that most of the problems above has
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a linear SDP counterpart. In particular, setting C := Inx
and D21 := 0 (i. e. y = x, ny = nx),

a clever change of variable leads to linear SDP formulations of the underlying (special) control
problems. In this subsection, we state only a very uncomplete list of such SDPs. For more SDP
instances, we refer the interested reader to [5] and the references therein.

2.2.1. H2–SDP problem. Assuming B1B
T
1 ≻ 0, the linear H2–SDP problem is defined by:

minX,Y,Q Tr (X)

s.t.

[

X C1Q + D12Y
(C1Q + D12Y )T Q

]

� 0,

AQ + QAT + BY + Y T BT + B1B
T
1 ≺ 0, Q ≻ 0,

(2.26)

where Q = QT ∈ IRnx×nx , X = XT ∈ IRnz×nz and Y ∈ IRnu×nx are the optimization variable
and in an optimal solution of (2.26), one can define F = Y Q−1 ∈ IRnu×nx . Note, if B1B

T
1 ≻ 0 is

not satisfied in COMPleib , in the definition of (2.26) we replace B1B
T
1 by B1B

T
1 + ǫInx

, where ǫ
denotes a fixed small positive scalar.

2.2.2. H∞–SDP problem. Similarly as in the subsection above, we get again a linear SDP
version of the H∞ problem, i. e. we have

minQ,Y,γ γ

s.t. γ > 0, Q ≻ 0,





AQ + QAT + BY + Y T BT QCT
1 + Y T DT

12 B1

C1Q + D12Y −γInz
D11

BT
1 DT

11 −γInw



 ≺ 0.
(2.27)

where Q = QT ∈ IRnx×nx , γ ∈ IR and Y ∈ IRnu×nx are the free variable and in an optimal solution
of (2.27), we set F = Y Q−1 ∈ IRnu×nx .

2.2.3. H2/H∞–SDP problem. The linear H2/H∞–SDP is a combination of the SDPs de-
fined in the last two paragraphs. For a given scalar γ > 0, the following linear problem represents
one version of the H2/H∞–SDP:

minQ,X,Y Tr (X)

s.t.





AQ + QAT + BY + Y T BT QCT
1 + Y T DT

12 B1

C1Q + D12Y −γInz
0

BT
1 0 −γInw



 ≺ 0,

Q ≻ 0,

[

X C1Q + D12Y
(C1Q + D12Y )T Q

]

� 0,

(2.28)

where Q = QT ∈ IRnx×nx , X = XT ∈ IRnz×nz and Y ∈ IRnu×nx are the free variable and in an
optimal solution of (2.28), we define F = Y Q−1 ∈ IRnu×nx .

2.3. Other related matrix design problems . Optimization problems involving the eigen-
values of a matrix variable have broad interest and application. One particular instance is the
stability of the dynamical (closed loop control) system ẋ(t) = (A + BFC)x(t), where F denotes
an unknown matrix variable. It is well known that the (pure) stability analysis problem of this
system is an eigenvalue problem of the following form: find F ∈ IRnu×ny such that the real part
of the maximal eigenvalue of the (in general nonsymmetric) closed loop matrix A(F ) = A + BFC
is strictly negative. Using the Lyapunov theorem, this problem can be formulated as a nonlinear
semidefinite program in the unknowns P ∈ Snx , F ∈ IRnu×ny and β ∈ IR (cf. [5], [9]):

min
β,F,P

β s. t. P ≻ 0, (A + BFC)T P + P (A + BFC) � 2βP. (2.29)
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Obviously, if the optimal value of (2.29) is strictly negative, then there exists a feedback control law
u(t) = Fy(t) such that the closed loop system is (asymptotically) stable. Equivalently, an optimal
value of (2.29) can be found by solving the following nonsmooth and nonconvex optimization
problem (see, i. e. [7], [8] and the references therein):

min
F∈IRnu×ny

α0(A + BFC), (2.30)

where

α0(A + BFC) := sup{Re(λ) | λ ∈ Λ(A + BFC)} (2.31)

is the so–called (pure) spectral abscissa of A + BFC, Re(λ) denotes the real part of λ ∈ IC and
Λ(A + BFC) defines the spectrum of A + BFC.

However, a simple optimization of the decay rate of the LTI system (which is the stability
degree of A(F), i. e. , the negative of the maximum real part of the eigenvalues of A(F)) alone
has serious drawbacks in the stability analysis of systems. More general, considering only the pure
spectrum of a matrix has also many drawbacks in other areas (see, [30] and the references therein).
Therefore, as Trefethen and others have pointed out (see, [8], [30] and the references therein),
the ǫ–pseudospectra of a matrix are more informative and much more robust in many modelling
frameworks, particularly in the analysis of robust stability of LTI systems. The ǫ–pseudospectral
abscissa of A + BFC, defined as the largest real part of all elements of the pseudospectrum of
A + BFC, for a fixed ǫ ≥ 0 and F ∈ IRnu×ny , is closely related to the H∞ norm or the complex
stability radius of a LTI system (see [8], [7], [10] and the references therein). For fixed ǫ ≥ 0,
the ǫ–pseudospectral abscissa αǫ(A + BFC) of A + BFC is defined as the largest real part of the
ǫ–pseudospectrum Λǫ(A + BFC), i. e.

αǫ(A + BFC) := sup{Re(λ) | λ ∈ Λǫ(A + BFC)}, (2.32)

where Λǫ(A+BFC) := {λ ∈ IC | λ ∈ Λ(X), ||X−(A+BFC)||2 ≤ ǫ} denotes the ǫ–pseudospectrum
of the matrix A + BFC. Note, when ǫ = 0, the ǫ–pseudospectrum reduces to the spectrum and,
thus, the ǫ–pseudospectral abscissa coincides with the pure spectral abscissa. With the definition
of the ǫ–pseudospectral abscissa of a (in general nonsymmetric) matrix at hand, we are now in
a position to state the robust counterpart of the nonsmooth and nonconvex matrix optimization
problem (2.30) (see [7]):

min
F∈IRnu×ny

αǫ(A + BFC), (2.33)

where ǫ ≥ 0 fixed. Just as with the pure spectral abscissa minimization problem (2.30), the ǫ–
pseudospectral abscissa optimization problem (2.33) can be characterized via a nonlinear semidef-
inite program. In particular, by using the S–procedure as in [5, page 67] or [1, Proposition 4.4.2],
(2.33) is equivalent to the following NSDP in the unknowns P ∈ Snx , F ∈ IRnu×ny and β, µ, ω ∈ IR
(see, also [8]):

min
β,µ,ω,F,P

β s. t.

(

2βP − A(F )T P − PA(F ) + µI − ωCT
z Cz −ǫPBw

−ǫBT
wP ωI

)

� 0, P ≻ 0, µ < 0,

(2.34)
and ω ≥ 0 if and only if we define Bw := I and Cz := I. Note, for real β, the condition
αǫ(A + BFC) < β is equivalent to the condition that the H∞ norm of the closed loop system
ẋ(t) = (A(F )−βI)x(t)+w(t), z(t) = x(t) is less than ǫ−1, i. e. ||(sI−(A+BFC−βI))−1||H∞

< ǫ−1

for s ∈ IC.
Another, more general interpretation of the NSDP (2.34) can be given in terms of norm–

bounded perturbations ∆ ∈ IRnu×ny with ||∆||2 ≤ ǫ for the following ROC or SOF control system:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), u(t) = (F + ∆)y(t),
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i. e. here we assume that the (unknown) feedback gain F is drifting around a certain nominal
feedback matrix. As a result, the closed loop matrix A(F ) is affected by perturbation of the form
B∆C with ||∆||2 ≤ ǫ. Hence, we get a perturbed closed loop system of the form

ẋ(t) = (A + BFC)x(t) + B∆Cx(t).

Then, defining Bw := B, Cz := C (instead of Bw := I and Cz := I), w := ∆Cx, z := y = Cx,
the optimal value of the general eigenvalue problem (2.34) is equal to the largest β such that the
H∞ norm of the closed loop system ẋ(t) = (A(F ) − βI)x(t) + Bww(t), z(t) = Czx(t) is less than
ǫ−1, i. e. ||Cz(sI − (A + BFC − βI))−1Bw||H∞

< ǫ−1 for s ∈ IC. In this case, F is a robust output
feedback gain.

An alternate equivalent formulation to the NSDP (2.34) in the unknowns Q := P−1 ∈ Snx ,
F ∈ IRnu×ny and β, µ, ω ∈ IR is the following BMI problem:

min
β,µ,ω,F,P

β s. t.

(

2βQ − A(F )Q − QA(F )T + µI − ωBwBT
w −ǫQCT

z

−ǫCzQ ωI

)

� 0, Q ≻ 0, µ < 0,

(2.35)
and ω ≥ 0. Note, if we define Bw := I and Cz := I then the BMI problem (2.35) is equivalent to
the ǫ–pseudospectral abscissa optimization problem (2.33).

Another interesting measure of robust stability is the complex stability radius ξ(A + BFC) of
a matrix A(F ) = A + BFC, also known as the distance to the unstable matrices (see [7] and the
refernces therein). It is well known that the complex stability radius of A(F ), defined by

ξ(A + BFC) := min
λ,X

{||X − (A + BFC)||2 | σmin(X − λI) = 0, Re(λ) ≥ 0}, (2.36)

where λ ∈ IC, X ∈ ICnx×nx and σmin(·) denotes the smallest singular value of a matrix, is closely
related to the H∞ norm of the associated transfer function matrix (sI − (A + BFC))−1. In
particular, ξ(A + BFC)−1 is the H∞ norm of (sI − (A + BFC))−1. Moreover, for any real β, we
have the following relation (see [8])

αǫ(A + BFC) ≥ β ⇐⇒ ξ(A + BFC − βI) ≥ ǫ.

Efficient algorithms to compute the pseudospectral abscissa and the complex stability radius
of a matrix are available. Note, the latter is a special case of more general H∞ norm computations.
In example, the test examples collected in COMPleib may serve as a benchmark collection for the
well known H∞ norm computation solvers [4], [6] and for ǫ–pseudospectral abscissa and related
(nonconvex) matrix optimization problems, the algorithms developed in [9], [11] and [10] are good
candidates which can be benchmarked by COMPleib . Note, Burke, Lewis and Overton used some
of our COMPleib test examples during the development of their solvers described in [9], [11] and
[10].

3. Output feedback control of 2D heat flow models . In this section we describe ex-
amples coming from output feedback control problems of two dimensional heat flow models. We
present different instances of such parabolic control problems and formulate the corresponding
control problem in infinite dimensional spaces. Using standard finite difference schemes we obtain
finite dimensional approximations to the infinite dimensional control problems. Typically, the ap-
proximation is a large scale control system and the corresponding system matrix A is very sparse
compared to the overall dimension, i. e. it is a sparse matrix containing only five diagonals with
nonzero elements. In our benchmark collection, we state the data matrices of the corresponding
discretized control systems. In particular, the discretization yields a control system of the following
general form:

Eẋ(t) = (A + δA)x(t) + G(x(t)) + B1w(t) + Bu(t), x(0) = x0,
z(t) = C1x(t) + D12u(t),
y(t) = Cx(t),
u(t) = Fy(t),

(3.1)
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where x ∈ IRnx is the approximation of the temperature, u ∈ IRnu is the control input, y ∈
IRny denotes the measurements, w ∈ IRnw is a disturbance input, z ∈ IRnz the regulated output,
E ∈ IRnx×nx is a regular diagonal matrix and A ∈ IRnx×nx , B ∈ IRnx×nu , B1 ∈ IRnx×nw , C ∈
IRny×nx , F ∈ IRnu×ny , C1 =

√
0.5c1 [Inx

0nu×nx
]T , D12 =

√
0.5d1 [0nx×nu

Inu
]T with c1, d1 ∈ IR

are given positive scalars. If δA ≡ 0 the system matrix A is not affected by a perturbation, and, if
G(x(t)) ≡ 0, the system is linear. Depending on the corresponding heat flow model, we get linear
or nonlinear control systems which we want to control by a linear output feedback control law of
the form u(t) = Fy(t).

3.1. Perturbed nonlinear heat equation with boundary control input . This example
presents the model of a two dimensional nonlinear heat equation on an U–shaped domain as
considered in [25]. In particular, the model consists of a nonlinear radiation term on one part of
the boundary of the domain. Moreover, there are only two control variables available on some
parts of the boundary and three fixed sensor locations in the domain which can be used for the
output feedback control loop. A further difficulty is the assumption that a perturbation operator
affects the heat flow of the model.

Let v(ξ, η; t) denote the temperature at (ξ, η) ∈ Ω ⊂ IR2 and time t > 0. The boundary

∂Ω =
⋃8

j=1 Γj of the U–shaped domain Ω is defined by

Γ1 = {(ξ, η) ∈ IR2 | ξ = a2, η ∈ [b2, b3]}, Γ2 = {(ξ, η) ∈ IR2 | ξ ∈ [0, a2], η = b3},
Γ3 = {(ξ, η) ∈ IR2 | ξ = 0, η ∈ [0, b3]}, Γ4 = {(ξ, η) ∈ IR2 | ξ ∈ [0, a2], η = 0},
Γ5 = {(ξ, η) ∈ IR2 | ξ = a2, η ∈ [0, b1]}, Γ6 = {(ξ, η) ∈ IR2 | ξ ∈ [a1, a2], η = b1},
Γ7 = {(ξ, η) ∈ IR2 | ξ = a1, η ∈ [b1, b2]}, Γ8 = {(ξ, η) ∈ IR2 | ξ ∈ [a1, a2], η = b2},

where 0 < a1 < a2, 0 < b1 < b2 < b3 and a1 = 1
2 , a2 = 1, b1 = 1

3 , b2 = 2
3 , b3 = 1. On this two dimen-

sional domain we consider the following nonlinear heat flow control problem: (v(ξ, η; t), u4(t), û(t))
satisfy the perturbed diffusion equation

vt(ξ, η; t) = κ(∆ + δ)v(ξ, η; t), in Ω, t > 0 (3.2)

with boundary and initial conditions

−λ ∂v
∂n

(ξ, η; t) = 0, on Γj , j = 1, 2, 3, 5, t > 0,
−λ ∂v

∂n
(ξ, η; t) = α4(v(ξ, η; t) − va

4 + u4(t)) + ε4σ(v(ξ, η; t)4 − (va
4 )4), on Γ4, t > 0,

−λ ∂v
∂n

(ξ, η; t) = α̂(v(ξ, η; t) − v̂a + û(t)), on Γj , j = 6, 7, 8, t > 0,
v(ξ, η, 0) = v0(ξ, η), in Ω,

(3.3)

where ∆ denotes the Laplace operator and δ is a perturbation operator. Moreover, we use the
following notation and thermal quantities of the material:

C : heat capacity, λ : heat conduction,

ρ : density, κ = λ
Cρ

: diffusion coefficient,

α4 : heat exchange factor on Γ4, α̂ : heat exchange factor on Γj , j = 6, 7, 8,
va
4

: ambient temperature on Γ4, v̂a : ambient temperature on Γj , j = 6, 7, 8,
u4 : boundary control on Γ4, û : boundary control on Γj , j = 6, 7, 8,
ε4 : radiation coefficient on Γ4, σ = 5.6697 · 10−8 : Stefan–Boltzmann constant
v : temperature in ◦K on Ω, v0 : initial temperature on Ω.

The system is described by a linear perturbed partial differential equation (the heat equation)
coupled, through the boundary conditions to a nonlinear radiation term. We are interested in
using sensed information to design a low–order output feedback control law. Note, we have only
two control inputs acting on Γ4 and Γ6 ∪ Γ7 ∪ Γ8. We assume that the only measured information
available to these controls is the temperature at time t at three fixed sensor locations in the domain
Ω. In example, the three observation variables yi, i = 1, 2, 3, are given by

y1(t) = v(0, b3; t), y2(t) = v(0, 0; t), y3(t) = v(a1,
1
2b3; t). (3.4)

The nonlinear control system governed by equations (3.2) – (3.4) can be written as a dynamical
system in an appropriate (infinite dimensional) state space. For computing a linear output feedback
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control law of the form u(t) = Fy(t), we apply standard finite difference approximation techniques
to the system described above. Although it is not essential to use finite differences, we restrict our
attention to this approximation approach because it is easy to implement. Alternatively, a finite
element approximation can be used for building the finite dimensional system corresponding to
(3.2) – (3.4). We discretize the domain Ω by a uniform grid, where h = a2

66 ≈ 0.015 is the spatial
step size in ξ– and η–direction. The resulting number of grid points is nx = 3796. Thus, we obtain
a large scale finite dimensional nonlinear control system of the form (3.1) with only two control
inputs (nu = 2) and three measured output variables (ny = 3). Note, it is an approximation of the
infinite dimensional nonlinear control system. Due to fixed ambient temperature va = [va

4 , v̂a]T

on some parts of the boundary, the term B1w(t) with w(t) ≡ [1, . . . , 1]T ∈ IRnw represents this
constant part in our discrete model. The matrix δA ∈ IRnx×nx approximates the perturbation
operator δ and

G : IRnx → IRnx , G(x(t)) := Nx(t)4, N ∈ IRnx×nx

models the approximation of the nonlinear boundary part ε4σv(·; t)4 on Γ4.
The authors in [25] combine a proper orthogonal decomposition (POD) approach with an

interior point constrained trust region (IPCTR) algorithm for computing the static output feedback
controller gain F . Instead of computing F directly from the large scale (nonlinear) control system
(3.1), Leibfritz and Volkwein [25] first reduce the dimension of (3.1) to a very low dimensional
approximation of (3.1) by POD. In example, they compute only five POD basis functions from the
snapshots of the uncontrolled nonlinear system (for u = 0) which results in a very low dimensional
POD system of order npod = 5. Then in a second step, they compute the SOF control gain F for
the linearized POD system (i. e. they delete the nonlinear part). Finally, they plug in the POD
controller gain F into the large dimensional (unstable) nonlinear system (3.1) of order nx = 3796.
Particularly, they have chosen the perturbation operator δA such that at least one real part of the
eigenvalues of (A + δA) is positive. For more details, we refer the interested reader to [23], [25]
and the references therein.

In the following two case studies, we use the procedure proposed by [25] for computing a
stabilizable SOF controller for the unstable nonlinear control system (3.1).

3.1.1. Case study: Copper . Choosing δA = 0.3825Inx
, c1 = 0.5, d1 = 100 and setting the

following parameters,

C = 0.0914, λ = 0.05, ρ = 8.94, α4 = 0.1, ε4 = 0.00023, α̂ = 0.2, va
4 = 1700◦K, v̂a = 400◦K, v0 = 850◦K,

for the thermal properties of copper, the plots in Figure 3.1 and 3.3 illustrate pretty good that

Fig. 3.1. Copper: with control at T = 20.
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Fig. 3.2. Copper: no control at T = 20.
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the SOF control law protect the material (here: copper) from overheating (melting temperature:
1356.2 Kelvin). The hot spot of the material is 300◦K below the melting temperature of copper.
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Fig. 3.3. Copper: with control at t = 1.5, 3, 10, 20.
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Fig. 3.4. Copper: no control at t = 1.5, 3, 10, 20.
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Note, the inner holes in the domain of Ω are cooling channels which are embedded in the material.
On the other hand, we see in Figure 3.2 and 3.4 the instability of the uncontrolled perturbed

Fig. 3.5. Copper: optimal SOF control.
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Fig. 3.6. Convergence: IPCTR.
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nonlinear system. In the uncontrolled case, the temperature increases rapidly. After 1.5 seconds
of the heating process, the temperature is above the melting temperature of copper. Roughly
speaking, without any control, the system burns out completely.

The optimal boundary control input computed by IPCTR can be found in Figure 3.5. The
blue dash dotted curve represents the control û acting on Γ6 ∪ Γ7 ∪ Γ8. Or, in other words, û
controls the cooling action of the system in the cooling channels. The red solid line represents
the feedback control u4 on Γ4. This control acts on the outer boundary of the domain, where the
ambient temperature va

4 = 1700◦K is larger then the melting temperature of copper.

The convergence behavior of IPCTR for computing the SOF gain F for the low dimensional
POD control system is visualized in Figure 3.6. IPCTR determines the solution of the correspond-
ing NSDP within 8 outer and totally 100 inner iterations. Moreover, IPCTR consumes 1.476 CPU
seconds on a DELL notebook with a pentium III, 1.0 GHz, processor. The figure also demonstrates
the global linear as well as the quadratic local convergence rates of the algorithm. In particular,
for sufficiently small barrier parameters, the inner loop IPCTR is never active and the local rate
of convergence is quadratic (see the last two iteration dots in Figure 3.6).

Summing up, this very simple output feedback control law with only two control inputs and
three observation points is able to stabilize the nonlinear and unstable large dimensional control
system. This example demonstrates that the combination of POD model reduction and nonlinear
semidefinite programming can be considered as a useful tool for the design of simple output feedback
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control laws for large nonlinear and unstable PDE models. In the test collection, we denote by
(HF2D1) the large scale approximation of the nonlinear heat flow model for copper, while (HF2D10)
refers to the corresponding POD approximation.

3.1.2. Case study: Platinum . In this second example we study the behaviour of the
perturbed nonlinear heat flow model if we replace copper by platinum. Note, the melting tem-
perature of platinum is about 700◦K higher than the metling temperature of copper. Choosing
δA = 0.5325Inx

, c1 = 0.5, d1 = 100 and setting

C = 0.1297, λ = 0.7264, ρ = 21.4519, α4 = 0.51, ε4 = 0.04, α̂ = 0.32, va
4 = 2500◦K, v̂a = 1500◦K, v0 = 1250◦K.

for thermal properties of platinum, we are able to draw similar observations as in the case study
of copper. The temperature distribution of the controlled process can be found in Figures 3.7

Fig. 3.7. Platinum: with control at T = 20.
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Fig. 3.8. Platinum: no control at T = 20.
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Fig. 3.9. Platinum: with control at t = 1.5, 3, 10, 20.
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Fig. 3.10. Platinum: no control at t = 1.5, 3, 10, 20.
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and 3.9. Again, we observe that the very simple SOF controller is able to protect platinum from
overheating. Moreover, we see therein that the simple controller stabilizes the unstable perturbed
nonlinear control system pretty good. The behaviour of the uncontrolled system is visualized in
Figures 3.8 and 3.10, respectively. Obviously, the uncontrolled nonlinear perturbed system is not
stable. After 1.5 seconds the temperature is above the melting temperature and after 3 seconds it
is even above the boiling temperature (4098◦K) of platinum. Thus, the material vaporizes within
a very short time period.

In the test set, (HF2D2) denotes the large scale approximation of this nonlinear heat flow
example, while the corresponding POD approximation is in (HF2D11).
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3.2. Boundary output feedback control examples of 2D heat flow models on a
rectangular domain . In this subsection we describe some examples arising in two dimensional
heat flow models on rectangular domains. We assume that the control variables act only on the
(outer) boundary parts (denoted by Γ3, Γ4) of the domain. Moreover, there are only four (fixed)
sensor locations which can be used for the output feedback control loop.

The boundary ∂Ω =
⋃4

j=1 Γj of the rectangular domain Ω = [0, a] × [0, b] is given by

Γ1 = {(ξ, η) ∈ IR2 | ξ ∈ [0, a], η = b}, Γ2 = {(ξ, η) ∈ IR2 | ξ = 0, η ∈ [0, b]},
Γ3 = {(ξ, η) ∈ IR2 | ξ ∈ [0, a], η = 0}, Γ4 = {(ξ, η) ∈ IR2 | ξ = a, η ∈ [0, b]},

where 0 < a, 0 < b and, with no loss of generality, we set a = 1, b = 1. In the hole part of this
subsection, we suppose that the boundary control variable u3(t), u4(t) act on Γ3, Γ4, respectively.
Thus, nu = 2. Moreover, we assume that the only measured information available to the boundary

Fig. 3.11. Sensor location in the domain Ω.
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control inputs is the average temperature at time t within fixed sensor domains located in Ω.
Particularly, Figure 3.11 visualizes the location of the four sensors in Ω. The resulting four (ny = 4)
measurement variables yi, i = 1, 2, 3, 4, are defined by the average temperature measured at the
grid points within the i–th sensor domain. As we can see in Figure 3.11, the four sensors are
located at the outer boundary of the domain, i. e. we measure the temperature on parts on Γ3 and
Γ4.

3.2.1. Linear heat flow with boundary control . On the rectangular domain Ω we con-
sider here the following two dimensional example of linear heat flow model:

vt(ξ, η; t) = κ∆v(ξ, η; t), in Ω, t > 0,
−λ ∂v

∂n
(ξ, η; t) = 0, on Γj , j = 1, 2, t > 0,

−λ ∂v
∂n

(ξ, η; t) = αj(v(ξ, η; t) − va
j + uj(t)), on Γj , j = 3, 4, t > 0,

v(ξ, η, 0) = v0(ξ, η), in Ω,

(3.5)

where ∆ denotes the Laplace operator and

C : heat capacity in g

cm3
, λ : heat conduction in W

Kcm
,

ρ : density in J
gK

, κ = λ
Cρ

: diffusion coefficient,

α3 : heat exchange factor on Γ3, α4 : heat exchange factor on Γ4,
va
3

: ambient temperature in ◦K on Γ3, va
4

: ambient temperature in ◦K on Γ4,
u3 : boundary control on Γ3, u4 : boundary control on Γ4,
v : temperature in ◦K on Ω, v0 : initial temperature on Ω.

Applying a finite difference approximation scheme, we obtain a large scale linear output feedback
control system of the form (3.1). But, note, due to the linearity of (3.5), we have G(x(t)) ≡ 0 in
(3.1). Moreover, δA ≡ 0 in (3.1), since we do not assume here that the Laplace operator is affected
by a perturbation.
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For this linear heat flow model with boundary output feedback control input, the benchmark
collection contains two different data sets of the linear control system of the form (3.1). The first
data set corresponds to a case study for copper, while the second data set comes from a case study
for platinum. Table 3.1 lists the parameters that we have used for generating the corresponding
data sets for these two linear control system examples. In our test environment, (HF2D3) (copper)

Table 3.1
Parameter: linear heat flow model

Material nx nu ny ρ C λ α3 α4 va
3

va
4

c1 d1

copper 4489 2 4 8.94 0.0914 0.05 0.1 0.2 1600 900 100 10

platinum 2025 2 4 21.4519 0.1297 0.7264 0.51 0.32 2500 1500 1 100

and (HF2D4) (platinum) refers to the large scale approximation of the linear heat flow model,
while the corresponding POD approximations can be found in (HF2D12) (copper) and (HF2D13)
(platinum), respectively.

3.2.2. Perturbed linear heat flow with boundary control . In this example, we change
the linear model defined in Paragraph 3.2.1 by adding a perturbation operator to the linear heat
equation in (3.5). Particularly, on the rectangular domain Ω we consider now the following per-
turbed linear heat flow model:

vt(ξ, η; t) = κ(∆ + δ)v(ξ, η; t), in Ω, t > 0,
−λ ∂v

∂n
(ξ, η; t) = 0, on Γj , j = 1, 2, t > 0,

−λ ∂v
∂n

(ξ, η; t) = αj(v(ξ, η; t) − va
j + uj(t)), on Γj , j = 3, 4, t > 0,

v(ξ, η, 0) = v0(ξ, η), in Ω,

(3.6)

where ∆ denotes the Laplace operator and δ is a perturbation operator. The other quantities are
defined as in Paragraph 3.2.1.

Similar as above, a discretization scheme yields a large scale linear output feedback control
system of the form (3.1). Again, due to the linearity of (3.6), we have G(x(t)) ≡ 0 in (3.1), but
now, δA 6= 0 in (3.1), since we assume δ 6= 0.

For the perturbed linear heat flow model with boundary output feedback control input, the
benchmark collection contains two different data sets of the linear control system of the form (3.1)
too. The first data set corresponds to a case study for copper, while the second data set comes
from a case study for platinum. Table 3.2 lists the parameters that we have used for generating the
corresponding data sets for these two linear control system examples. For the perturbation operator

Table 3.2
Parameter: perturbed linear heat flow model

Material nx nu ny ρ C λ α3 α4 va
3

va
4

c1 d1 sδ

copper 4489 2 4 8.94 0.0914 0.05 0.1 0.2 1600 900 10 100 0.3825

platinum 2025 2 4 21.4519 0.1297 0.7264 0.51 0.32 2500 1500 10 50 1.725

δ we used a scaled identity operator, i. e. δ := sδI, where I denotes the identity mapping and sδ

is a given positive scalar. For generating the examples in the test set collection, sδ can be found
in Table 3.2. For both instances, the perturbation operator shifts the original stable system to an
unstable linear control system. In example, there is at least one eigenvalue of (A+δA) with positive
real part. Note, in our case, the discrete perturbation operator is given by δA = sδInx

. Moreover,
in the test set, (HF2D5) (copper) and (HF2D6) (platinum) denotes the large scale approximation
of the perturbed linear model, while the POD approximations of these two instances are contained
in (HF2D14) (copper) and (HF2D15) (platinum), respectively.
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3.2.3. Perturbed nonlinear heat flow with boundary control . Finally, we extend the
perturbed linear heat flow model stated in Paragraph 3.2.2 to a nonlinear model. Especially, in
(3.8) we add the nonlinear radiation term

εj σ
(

v(ξ, η; t)4 −
(

va
j

)4
)

, j = 3, 4, (3.7)

to the boundary terms on Γj , j = 3, 4, where

εj : radiation coefficient on Γj , j = 3, 4, σ = 5.6697 · 10−8 : Stefan–Boltzmann constant
va

j : ambient temperature on Γj , j = 3, 4, v : temperature in ◦K on Ω.

Thus, we get the following perturbed nonlinear model:

vt(ξ, η; t) = κ(∆ + δ)v(ξ, η; t), in Ω, t > 0,
−λ ∂v

∂n
(ξ, η; t) = 0, on Γj, j = 1, 2, t > 0,

−λ ∂v
∂n

(ξ, η; t) = αj(v(ξ, η; t) − va
j + uj(t)) + εj σ

(

v(ξ, η; t)4 −
(

va
j

)4
)

, on Γj, j = 3, 4, t > 0,

v(ξ, η, 0) = v0(ξ, η), in Ω,
(3.8)

where the variables and parameters are denoted as in the previous two Paragraphs 3.2.1 and 3.2.2,
respectively. Then, a discretization of the infinite dimensional nonlinear model (3.8) yields a large
finite dimensional nonlinear control system of the form (3.1). Due to the nonlinearity of (3.8), in
(3.1) the nonlinear function

G : IRnx → IRnx , G(x(t)) := Nx(t)4, N ∈ IRnx×nx

models the approximation of the nonlinear boundary terms εjσv(·; t)4 on Γj , j = 3, 4. Moreover,
δA 6= 0, where δA = sδInx

and sδ > 0 given.
For the perturbed nonlinear heat flow model the benchmark collection also contains two dif-

ferent data sets of the nonlinear control system (3.1). One data set corresponds to a case study
for copper, while the other data set comes from a case study for platinum. Table 3.3 lists the
parameters that we have used for generating the corresponding data set of the nonlinear control
system example. Moreover, the values for ρ, C and λ are defined as in Table 3.2. Note, due to the

Table 3.3
Parameter: perturbed nonlinear heat flow model

Material nx nu ny ε3 ε4 α3 α4 va
3

va
4

c1 d1 sδ

copper 4489 2 4 2.3 · 10−4 2.3 · 10−4 0.1 0.2 1600 900 10 100 0.2775

platinum 2025 2 4 4.0 · 10−6 4.0 · 10−6 0.51 0.32 2500 1500 50 50 0.7575

choice of sδ (see Table 3.3), the perturbation operator also shifts the original stable system to an
unstable control system. In example, there is at least one eigenvalue of (A+ δA) with positive real
part.

In the test set (HF2D7) (copper) and (HF2D8) (platinum) refers to the large dimensional
approximation of this model, while (HF2D16) and (HF2D18) denotes the corresponding POD
reduced order approximation of the large control system, respectively.

3.3. Distributed control of a perturbed linear heat flow model . In this subsection
we consider a two dimensional model of the linear heat equation with nu distributed control input
functions in the domain Ω = [0, a] × [0, b], where a = 1, b = 1. Moreover, we assume that the
heating process is affected by a perturbation operator acting on Ω. Then the two dimensional
perturbed linear model is defined by:

vt(ξ, η; t) = κ(∆ + δ)v(ξ, η; t) +
∑nu

i=1 ui(t)bi, in Ω, t > 0,
v(ξ, η; t) = 0, on ∂Ω, t > 0,
v(ξ, η, 0) = v0(ξ, η), in Ω,

(3.9)
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where ∆ denotes the Laplace operator, δ is a perturbation operator, ∂Ω denotes the boundary
of Ω, κ > 0 is the diffusion coefficient, bi, i = 1, . . . , nu are given shape functions for the control
inputs u1, . . . , unu

and v0(·) is the initial temperature distribution in Ω at t = 0. After a spatial
finite difference discretization (with uniform mesh size h = 0.0167) of (3.9) we end up with a linear
control system of the form

ẋ(t) = (A + δA)x(t) + B1w(t) + Bu(t), x(0) = x0,
z(t) = C1x(t) + D12u(t),
y(t) = Cx(t),
u(t) = Fy(t),

(3.10)

where, here, nx = 3481 and the variables and constant data matrices are defined as in (3.1),
respectively. We choose nu = 2 and bi = χΩu

i
, i = 1, 2, where χΩu

i
denotes the characteristic

function on the control input domain Ωu
i ⊂ Ω of ui and

Ωu
1 = [0.1, 0.4]× [0.1, 0.4], Ωu

2 = [0.5, 0.7]× [0.5, 0.7].

Moreover, we set ny = 2 and measure the state on the observation domains Ωy
i ⊂ Ω, i = 1, 2 of

y(t) = (y1(t), y2(t))
T , where

Ωy
1 = [0.1, 0.2]× [0.1, 0.2], Ωy

2 = [0.4, 0.6]× [0.4, 0.6].

Hence, the data matrices B ∈ IRnx×nu , C ∈ IRny×nx only contain zeros and ones with ones at grid
points within the control input and observation domains, respectively.

Table 3.4 lists the parameters that we have used for generating the corresponding data set
for the linear control system of the form (3.1). Note, due to the choice of sδ (see Table 3.4), the

Table 3.4
Parameter: perturbed distributed control heat flow model

nx nu ny κ c1 d1 sδ

3481 2 2 0.01 1 1 0.47813

perturbation operator δA := sδInx
shifts the original linear stable system to an unstable control

system. In example, the real part of the largest eigenvalue of (A + δA) is positive. Figure 3.12

Fig. 3.12. Distributed control input at t =
1.5, 3, 10, 20.
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Fig. 3.13. No distributed control at t = 1.5, 3, 10, 20.
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shows the temperature distribution of the linear perturbed heat flow example (3.9) if we use the
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output feedback control law computed by IPCTR in combination with POD. This figure illustrates
very well that the simple SOF controller stabilizes the unstable control system pretty good. On
the other hand, due to the perturbation in the heat equation, Figure 3.13 visualizes the instability
of this heat flow process. In the uncontrolled case, we observe a rapid increase of the temperature.

In our test set collection (HF2D9) refers to the large scale perturbed approximation of this
example. On the other hand, the corresponding POD model is stated in (HF2D18).

4. Short description of all benchmark examples in COMPleib 1.0. In this section we
present a short overview of all 124 test examples which are currently implemented in release 1.0 of
the test suite COMPleib . For more detailed information about the source and the application (if
any) of the COMPleib 1.0 benchmark problems, we refer to [21]. At the current stage, COMPleib

is divided into problem sets and the problem sets are grouped into problem classes.
Table 4.1 provides a list of the first problem class. In this class are those examples which are

static output feedback (SOF) stabilizable (i. e. see Section 1).

Table 4.1: Static output feedback control examples

Example nx nu ny Structure of A Example nx nu ny Structure of A
(AC1) 5 3 3 dense (WEC3) 10 3 4 dense
(AC2) 5 3 3 dense (HF1) 130 1 2 sparse
(AC3) 5 2 4 dense (BDT1) 11 3 3 sparse
(AC4) 4 1 2 dense (BDT2) 82 4 4 sparse
(AC5) 4 2 2 dense (MFP) 4 3 2 dense
(AC6) 7 2 4 dense (UWV) 8 2 2 dense
(AC7) 9 1 2 dense (IH) 21 11 10 sparse
(AC8) 9 1 5 dense (CSE1) 20 2 10 sparse
(AC9) 10 4 5 dense (CSE2) 60 2 30 sparse
(AC10) 55 2 2 sparse (EB1) 10 1 1 sparse
(AC11) 5 2 4 dense (EB2) 10 1 1 sparse
(AC12) 4 3 4 dense (EB3) 10 1 1 sparse
(AC13) 28 3 4 sparse (EB4) 20 1 1 sparse
(AC14) 40 3 4 sparse (EB5) 40 1 1 sparse
(AC15) 4 2 3 dense (EB6) 160 1 1 sparse
(AC16) 4 2 4 dense (PAS) 5 1 3 dense
(AC17) 4 1 2 dense (TF1) 7 2 4 dense
(AC18) 10 2 2 dense (TF2) 7 2 3 dense
(HE1) 4 2 1 dense (TF3) 7 2 3 dense
(HE2) 4 2 2 dense (PSM) 7 2 3 dense
(HE3) 8 4 6 dense (TL) 256 2 2 dense
(HE4) 8 4 6 dense (CDP) 120 2 2 sparse
(HE5) 8 4 2 dense (NN1) 3 1 2 dense
(HE6) 20 4 6 dense (NN2) 2 1 1 dense
(HE7) 20 4 6 dense (NN3) 4 1 1 dense
(JE1) 30 3 5 partly sparse (NN4) 4 2 3 dense
(JE2) 21 3 3 dense (NN5) 7 1 2 dense
(JE3) 24 3 6 dense (NN6) 9 1 4 dense

(REA1) 4 2 3 dense (NN7) 9 1 4 dense
(REA2) 4 2 2 dense (NN8) 3 2 2 dense
(REA3) 12 1 3 dense (NN9) 5 3 2 dense
(REA4) 8 1 1 dense (NN10) 8 3 3 dense
(DIS1) 8 4 4 dense (NN11) 16 3 5 dense
(DIS2) 3 2 2 dense (NN12) 6 2 2 dense
(DIS3) 6 4 4 dense (NN13) 6 2 2 dense
(DIS4) 6 4 6 dense (NN14) 6 2 2 dense
(DIS5) 4 2 2 dense (NN15) 3 2 2 dense
(TG1) 10 2 2 dense (NN16) 8 4 4 dense
(AGS) 12 2 2 sparse (NN17) 3 2 1 dense

(WEC1) 10 3 4 dense (NN18) 1006 1 1 sparse
(WEC2) 10 3 4 dense

Note, we subdivide the example class of COMPleib listed in Table 4.1 into the following problem
sets:
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• Aircraft models (AC)
• Helicopter models (HE)
• Jet engine models (JE)
• Reactor models (REA)
• Decentralized interconnected systems (DIS)
• Euler Bernoulli beams (EB)
• Academic test problems (NN).

Moreover, some further examples from different applications in this class are, i. e. , wind energy
conversion models (WEC), binary distillation towers (BDT), terrain following models (TF), and a
compact disk player (CDP).

The second class of COMPleib examples are the 2D heat flow models as intensely discussed
in Section 3. As listed in Table 4.2, the first nine examples represent the approximation of the
discretized 2D heat flow models, while the other nine are the corresponding highly reduced order
approximations of the large dimensional systems gained by the proper orthogonal decomposition
(POD) approach as discussed in [25].

Table 4.2
2D heat flow models [Section 3]

Large model (sparse) POD model (dense) Property of
Example nx nu ny δ Example nx nu ny δ A model
(HF2D1) 3796 2 3 0.3825 (HF2D10) 5 2 3 0.3825 unstable nonlinear
(HF2D2) 3796 2 3 0.5325 (HF2D11) 5 2 3 0.5325 unstable nonlinear
(HF2D3) 4489 2 4 0 (HF2D12) 5 2 4 0 stable linear
(HF2D4) 2025 2 4 0 (HF2D13) 5 2 4 0 stable linear
(HF2D5) 4489 2 4 0.3825 (HF2D14) 5 2 4 0.3825 unstable linear
(HF2D6) 2025 2 4 1.725 (HF2D15) 5 2 4 1.725 unstable linear
(HF2D7) 4489 2 4 0.2775 (HF2D16) 5 2 4 0.2775 unstable nonlinear
(HF2D8) 2025 2 4 0.7575 (HF2D17) 5 2 4 0.7575 unstable nonlinear
(HF2D9) 3481 2 2 0.47813 (HF2D18) 5 2 2 0.47813 unstable linear

The examples listed in Table 4.3 represent so–called second order models which can be rewritten
into first order ODEs (i. e. see [21] and the references therein). Note, in this case, the system
matrices have a special structure. This is the reason why we have collected those problems in
an extra class. But, note, all currently COMPleib examples in this problem class are also SOF
stabilizable which, in general, is not always true for second order models.

Table 4.3
Second order models

Example nx nu ny Structure of A Example nx nu ny Structure of A
(CM1) 20 1 2 partly sparse (DLR1) 10 2 2 dense
(CM2) 60 1 2 partly sparse (DLR2) 40 2 2 sparse
(CM3) 120 1 2 partly sparse (DLR3) 40 2 2 sparse
(CM4) 240 1 2 partly sparse (ISS1) 270 3 3 sparse
(CM5) 480 1 2 partly sparse (ISS2) 270 3 3 sparse
(CM6) 960 1 2 partly sparse (CBM) 348 1 1 partly sparse
(TMD) 6 2 4 dense (LAH) 48 1 1 partly sparse
(FS) 5 1 3 dense

Briefly this class is divided into the following problem sets:
• six so–called cable mass models with very low damping (CM)
• three models of a space structure developed by the ”Deutsche Forschungsanstalt für Luft-

und Raumfahrt” (DLR)
• two instances of a component of the International Space Station (ISS)
• some other second order models, i. e. a tuned mass damper (TMD) example, a clamped

beam model (CBM), a flexible satellite (FS) example, and, finally, a model of the Los
Angeles (university) hospital (LAH)
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Table 4.4
Reduced order control problems

Example nx nu ny nc Structure of A Example nx nu ny nc Structure of A
(ROC1) 9 2 2 1 dense (ROC6) 5 3 3 2 dense
(ROC2) 10 2 3 1 dense (ROC7) 5 2 3 1 dense
(ROC3) 11 4 4 2 dense (ROC8) 9 4 4 3 dense
(ROC4) 9 2 2 1 dense (ROC9) 6 3 3 2 dense
(ROC5) 7 3 5 1 dense (ROC10) 6 2 4 1 dense

The last class of test examples in COMPleib 1.0 are the reduced order control (ROC) problems
(i. e. see Section 1). These instances are not SOF stabilizable, but they are at least stabilizable
by a reduced order output feedback control law of order nc. Table 4.4 gives an overview of the
currently implemented ROC problems. In this table, nc denotes the smallest possible order of
the reduced output feedback controller which can be used for stabilizing the control system. For
more details on ROC problems, we refer the interested reader back to Section 1 or to [25] and the
references therein.
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