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Numerical feedback
controller design for PDE
systems using model
reduction: techniques
and case studies

F. LEIBFRITZ ∗ and S. VOLKWEIN †

1 Introduction
Recently the application of reduced–order models to optimal control problems for
partial differential equations (PDEs) has received an increasing amount of attention.
The reduced–order approach is based on projecting the dynamical system onto
subspaces consisting of basis elements that contain characteristics of the expected
solution. This is in contrast to, e.g., finite element techniques, where the elements
of the subspaces are uncorrelated to the physical properties of the system that
they approximate. One reduced basis method is proper orthogonal decomposition
(POD). It has been successfully used in a variety of fields, see, for instance, in [9, 22]
for detailed reference lists.

Output feedback controller synthesis for linear control systems that meet de-
sired performance and/or robustness specifications is an attractive model–based
control design tool and has been an active research area of the control community
for several decades (see, e.g., [7, 30]). It is not always possible to have full access
to the state of the control system and a controller based on the measurements has
to be used. Output feedback synthesis without additional complexity constraints
yields in general a controller order equal to nx the dimension of the dynamical
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system. The computation of the controller action becomes more expensive with
increasing controller dimension. This is one reason why full order synthesis control
has not been widely used in industry. Recently, linear matrix inequalities (LMIs)
have attained much attention in control engineering [4], since many control prob-
lems can be formulated in terms of LMIs and thus solved via convex programming
approaches. However, the resulting controllers are state feedback or of order nx

equal to the plant. For example, difficulties arise if we want to design a static
output feedback (SOF) control law. In this case, the control problems consist of
finding a SOF controller which minimizes a performance measure subject to sta-
bility and/or robustness constraints. It is known that they can be rewritten to
non–convex matrix optimization problems (see [10, 12, 18]). Notice that in [17] the
first author extends these matrix optimization problems to nonlinear semidefinite
programs (NSDPs) by including explicitly the stability condition (modeled by two
matrix inequalities) into the problem formulation. Finding a numerical solution to
the non–convex NSDP is a difficult task, particularly, if the dimension of the NSDP
is large. Usually this will be the case if the control system dynamics are given by
a partial differential equation. Then, the dimension of the discretized counterpart
can be very large and the computation of an output feedback controller may be
impossible. In particular, the SOF case requires the solution of a large scale NSDP
with several million variables, which is usually not solvable. This is one of our main
motivations for considering the SOF problem for PDE constrained control problems
in combination with the POD method for deriving a low dimensional control system
and the interior point trust region (IPCTR) algorithm for solving the corresponding
low dimensional NSDP. The SOF control law can be constructed from the solution
of the low dimensional NSDP. In our numerical examples, we will demonstrate that
this SOF can be used for controlling the large dimensional PDE system. In partic-
ular, we illustrate that the choice of the POD norms as well as the POD snapshots
can improve the stability properties of the computed SOF gain.

The paper is organized in the following manner: In Section 2 we review the
POD method and recall some pre–requisites needed for the numerical experiments.
The discussion of static output feedback control design problems for finite dimen-
sional systems and a sketch of IPCTR is contained briefly in Section 3. Numerical
tests are carried out in Section 4 and in the last section we draw some conclusions.

Notation: Throughout this paper, Sn denotes the linear space of real sym-
metric n × n matrices. In the space of real m × n matrices we define the inner
product by 〈M, Z〉 = Tr(MT Z) for M,Z ∈ IRm×n, where Tr(·) is the trace op-
erator, and ‖ · ‖ denotes the Frobenius norm given by ‖M‖ = 〈M, M〉1/2, while
other norms and inner products will be specified. For a matrix M ∈ Sn we use
the notation M Â 0 or M º 0 if it is positive definite or positive semidefinite,
respectively. For a twice differentiable mapping G : U → W (U , W Banach spaces)
we denote by GU , GUU the first and second partial derivatives of G with respect to
U . Moreover, GU (·)H is used when a linear operator GU (·) is applied to an element
H ∈ U . Furthermore, G∗U (·) denotes the adjoint of GU (·) and L(U ,V) refers to the
space of linear, bounded operators endowed with the common norm.
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2 Proper orthogonal decomposition (POD)
POD is a method to derive reduced–order models for dynamical systems. In this
section we introduce the POD method for nonlinear dynamical systems and propose
the numerical realization of POD. Let us consider the following semi–linear initial
value problem

ẋ(t) +Ax(t) = f(t, x(t)) for t ∈ (0, T ),

x(0) = x◦,
(1)

where −A is the infinitesimal generator of a C0-semigroup S(t), t > 0, on a Hilbert
space Ξ, x◦ ∈ Ξ and f : [0, T ]× Ξ → Ξ is continuous in t and uniformly Lipschitz–
continuous on Ξ for every t. Problem (1) has a unique mild solution x ∈ C([0, T ]; Ξ)
given implicitly by the integral representation

x(t) = S(t)x◦ +
∫ t

0

S(t− s)f(s, x(s)) ds for t ∈ (0, T ), (2)

see, for instance, [24, p. 184]. If, in addition, f is continuously differentiable, then
the mild solution (2) with x◦ ∈ D(A) = {ϕ ∈ Ξ : Aϕ ∈ Ξ} is also a classical
solution, i.e., x ∈ C1([0, T ]; Ξ) holds and x satisfies (1) for all t ∈ [0, T ], see, e.g.,
[24, p. 187].

Let U and W be real separable Hilbert spaces and suppose that U is dense
in W with compact embedding. Throughout we assume that Ξ denote either the
space U or W and that x denotes the unique solution to (1) with x ∈ C1([0, T ]; Ξ).
For given n ∈ IN let

0 ≤ t1 < t2 < . . . < tn ≤ T

denote a grid in the interval [0, T ] and define

wj =

{
x(tj) for j = 1, . . . , n,

ẋ(tj−n) for j = n + 1, . . . , 2n.
(3)

Setting n1 = n and n2 = 2n we introduce two different linear spaces by

V1 = span {w1, . . . , wn1} and V2 = span {w1, . . . , wn2}

We refer to V1 as the ensemble consisting of the so-called snapshots {x(tj)}n
j=1,

compare [25], whereas V2 ⊇ V1 also includes the time derivatives ẋ(t) at t = tj for
1 ≤ j ≤ n. By (1) and (3), we have

wn+j = ẋ(tj) = G(t, xj), j = 1, . . . , n,

with G(t, x) = −Ax + f(t, x) for (t, x) ∈ [0, T ] × Ξ. Since we are interested in
building up a reduced–order model for (1), we want to utilize snapshots that are
best suited for reconstruction of the nonlinear dynamics G(t, x). Therefore, the set
V2 contains, in addition to the set V1, information about the spatial derivatives and
nonlinearities in the dynamical system, compare, e.g., [1, 15]. It follows that Vk ⊂ Ξ
by construction, k = 1 or 2.



“of˙pod˙pde”
2005/7/4
page

i

i

i

i

i

i

i

i

Let {ψi}dk
i=1 denote an orthonormal basis for Vk with dk = dimVk for k = 1

or 2. Then each member of the ensemble can be expressed as

wj =
dk∑

k=1

〈wj , ψi〉Ξψi for j = 1, . . . , ni. (4)

For k = 1 or 2 the method of POD consists in choosing an orthonormal basis such
that for every ` ∈ {1, . . . , dk} the mean square error between the elements wj ,
1 ≤ j ≤ nk, and the corresponding `-th partial sum of (4) is minimized on average:

min
1
nk

nk∑

j=1

∥∥∥wj −
∑̀

i=1

〈wj , ψi〉Ξψi

∥∥∥
2

Ξ

subject to 〈ψi, ψj〉Ξ = δij for 1 ≤ i ≤ `, 1 ≤ j ≤ i.

(5)

A solution {ψi}`
i=1 to (5) is called POD basis of rank `. The subspace spanned by

the first ` POD basis functions is denoted by V`, i.e.,

V` = span {ψ1, . . . , ψ`}. (6)

Utilizing a Lagrangian framework the solution of (5) is characterized by the
necessary optimality condition, which can be written as an eigenvalue problem (see,
e.g., [11, pp. 88-91] and [27, Section 2]). For that purpose we introduce the positive
semidefinite and symmetric matrix Kk ∈ IRnk×nk , k = 1 or 2, with elements

(Kk

)
ij

=
1
nk
〈wj , wi〉Ξ

The matrix Kk is often called a correlation matrix. Let λ1 ≥ λ2 ≥ . . . ≥ λdk
> 0 and

v1, . . . , vdk
∈ IRnk denote the dk positive eigenvalues of Kk and the corresponding

eigenvectors, respectively, i.e., we have

Kkvi = λivi, i = 1, . . . , dk. (7)

Then the POD basis functions are given by

ψi =
1

nk

√
λi

n∑

j=1

vj
i wj for i = 1, . . . , `, (8)

where vj
i stands for the j-th component of the eigenvector vi.

Remark 1. POD is closely related to the singular value decomposition. This fact
is very useful for implementation issues, in particular, for the computation of the
POD basis functions ψi as well as of the corresponding eigenvalues λi, 1 ≤ i ≤ `.
The finite–dimensional case was studied in [14], whereas the infinite–dimensional
case was analyzed in [22, 28]. ¦
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If the POD basis {ψi}`
i=1 is determined, e.g., by solving (7) and using (8), we

obtain the following value for the cost functional in (5):

1
nk

nk∑

j=1

∥∥∥wj −
∑̀

i=1

〈wj , ψi〉Ξψi

∥∥∥
2

Ξ
=

dk∑

`+1

λi,

see [27, Section 2], for instance. Thus, if the decay of the eigenvalues λi is very
rapid, the term

∑dk

`+1 λi is small, even for a small value of `. In this case only a few
POD basis functions represent the ensemble V1 or V2 in a sufficient manner. One
heuristic to choose the number ` of POD basis functions is

Ek(`) =
∑`

i=1 λi∑dk

i=1 λi

· 100 % ≈ 99 %, k ∈ {1, 2}.

Obviously, we have Ek(dk) = 100 %.
In Section 4 we compare the performance of POD model reduction by utilizing

either V1 or V2 and by taking either Ξ = U or Ξ = W with the choices W = L2(Ω)
and U = H1(Ω).

3 Numerical design of SOF control laws
We present a numerical strategy for the computation of a linear SOF control law for
discretized PDE control systems. In example, a finite difference or finite element
discretization of a PDE control problem yields a finite dimensional control system
of the following general form:

Eẋ(t) = (A + δA)x(t) + G(x(t)) + B1w̃(t) + Bu(t), x(0) = x◦,
z(t) = C1x(t) + D1u(t), y(t) = Cx(t), (9)

where x ∈ IRnx is the approximation of the state, u ∈ IRnu is the control input,
y ∈ IRny denotes the measurements, w̃ ∈ IRnw is a disturbance input, z ∈ IRnz

the regulated output, E ∈ IRnx×nx is a regular diagonal matrix and A ∈ IRnx×nx ,
B ∈ IRnx×nu , B1 ∈ IRnx×nw , C ∈ IRny×nx , C1 =

√
0.5c1 [Inx 0nu×nx ]T , D1 =√

0.5d1 [0nx×nu Inu ]T with c1, d1 ∈ IR are given positive scalars. If δA ≡ 0 the
system matrix A is not affected by a perturbation, and, if G(x(t)) ≡ 0, the system
is linear. Depending on the corresponding PDE model, we get linear or nonlinear
control systems which we want to control by a linear SOF control law of the form

u(t) = Fy(t), F ∈ IRnu×ny . (10)

If we neglect the nonlinear term G(x(t)) in (9) and substitute this linear SOF control
into the state space plant (9), then we obtain the following linear closed loop system:

ẋ(t) = A(F )x(t) + B(F )w̃(t), z(t) = C(F )x(t), (11)

where A(F ) := E−1(A + δA + BFC), B(F ) := E−1B1, C(F ) := C1 + D1FC are
the closed loop operators, respectively.
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SOF design and NSDP formulation

One of the most basic static output feedback design problem is the SOF–H2 problem
(see [17, 26]): Find a SOF gain F such that the closed loop matrix A(F ) is Hurwitz
and the H2 norm of (11) is minimal. It is well known that this problem can be
rewritten to the following H2–NSDP, see, e.g. [19, 21, 22],

min Tr(LB1B
T
1 ) s. t. A(F )T V + V A(F ) + I = 0, V Â 0,

A(F )T L + LA(F ) + C(F )T C(F ) = 0,
(12)

where L, V ∈ Snx . Note, (12) is bilinear in L, V, F and quadratic in F , hence non–
convex in the free variables. Therefore different local minima might occur and any
suitable NSDP solver usually determines a local solution of the matrix optimization
problem. A more attractive and realistic model–based control design tool is the
mixed H2/H∞ synthesis. It allows incorporation of model uncertainties in the
control design. The SOF–H2/H∞ problem can be formally stated in the following
term, see, e. g. [3, 18, 13]: For a given scalar γ > 0 find a SOF matrix F such that
A(F ) is Hurwitz, the H∞ norm of (11) is less than γ and the H2 norm of (11) is
minimal. For computing the SOF–H2/H∞ gain F , we consider the following known
H2/H∞–NSDP version, see, e.g. [19, 22]:

min Tr(LB1B
T
1 ) s. t. A(F )T L + LA(F ) + C(F )T C(F ) + 1

γ2 LB1B
T
1 L = 0,

(A(F ) + 1
γ2 B1B

T
1 L)T V + V (A(F ) + 1

γ2 B1B
T
1 L) + I = 0, V Â 0.

(13)

Due to the bilinearity of the free matrix variables it is a non–convex NSDP, too.

The NSDP Algorithm – Sketch of IPCTR

Our goal is to solve the NSDPs defined in the previous paragraph by IPCTR origi-
nally developed in [20] and augmented in [22] for solving NSDPs of the form

min J(X) s. t. H(X) = 0, G(X) = 0, Y (X) º 0, (14)

where X := (F, L, V ) ∈ X := IRnu×ny × Snx × Snx . We assume that J : X → IR,
H, G, Y : X → Snx are twice continuously (Frechét–) differentiable matrix functions
and the mapping H(·) is only a function in the variables (F, L), i.e., HV (X) ≡ 0.
Moreover, for given X ∈ Fs we suppose that the linear operators HL(X) and GV (X)
are invertible, where Fs := {X ∈ X | Y (X) Â 0}. Obviously, the NSPDs (12) and
(13) are in the form of (14). IPCTR is based on the approximate solution of a
sequence of matrix equality constraint barrier problems

min Φµ(X) = J(X)− µ log det(Y (X)) s. t. H(X) = 0, G(X) = 0, (15)

where µ > 0 and Y (X) is (implicitly) assumed to be positive definite. The La-
grangian function associated with (15) is defined by

`µ(X, K) = Φµ(X) + 〈Kh,H(X)〉+ 〈Kg, G(X)〉
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where K := (Kg,Kh) ∈ Sn × Sn are Lagrange multipliers for the equality con-
straints. The basic IPCTR algorithm combines ideas of (primal) interior point and
trust region methods with a modified conjugate gradient (CG) procedure. Please
note that a primal–dual method can be used instead of a pure primal method. The
primal approach has the advantage that we do not need to compute the dual matrix
variables for the nonlinear matrix inequality constraints. In the primal–dual case,
the computational complexity of a Newton–type method increases rapidly with the
number of the dual matrix variables. In particular, if nx is large, e. g. nx = 4000,
then the dual matrix variable for Y (X) ¹ 0, Y (X) ∈ Snx has several million un-
known entries, e. g. 1

2 · nx · (nx + 1) = 8.002 · 106.

Algorithm 3.1 (IPCTR, see, e.g., [20, 22])
Let X0 = (F0, L0, V0) with Y (X0) Â 0 and µ0, ε0 > 0 be given. For j = 0, 1, . . . do:

Find a solution Xj+1 = (Fj+1, Lj+1, Vj+1) ∈ Fs of (15) satisfying

||∇`
µj

F (Xj+1,Kj+1)||+ ||H(Xj+1)||+ ||G(Xj+1)|| ≤ εj ,

where the multipliers Kj+1 := (Kh,Kg)j+1 are the solutions of the adjoint
(multiplier) equations ∇`µ

L(X,Kh,Kg) = 0,∇`µ
V (X, Kh, Kg) = 0; e.g. ,

Kg = −(G−1
V (·))∗∇Φµ

V (·), Kh = −(H−1
L (·))∗(∇Φµ

L(·)−G∗L(·)Kg).

Choose µj+1 < µj and εj+1 < εj .

In an implementation of IPCTR, we have chosen the parameters µj and εj as stated

in [22]. In particular, if the actual barrier parameter µj < 1 we set µj+1 = Ω(µ
4m

2m+1
j ),

m ∈ IN. This is equivalent to µj+1 ≥ µ
4m

2m+1
j , where for related positive quantities

α and β, we write α = O(β) if there is a constant κ > 0 such that α ≥ κβ for all
β sufficiently small and α = Ω(β) if β = O(α). Otherwise, we choose µj+1 = aµj ,
a ∈ (0, 1). Using this rule, the rate at which the barrier parameter approaches zero
can be made as close to quadratic as one desires. The updating rule for the inexact
termination criterion is given by εj+1 = O(µ

1
m
j+1). In our practical implementation,

we choose m ∈ {2, 3, 4, 5}. Making standard assumptions on problem (14), it can
be proved that any cluster point of the sequence {Xj}j≥0 generated by IPCTR is
a KKT point of (14). For the proof we refer to [20, Theorem 3.1]. The tool used in
IPCTR for finding a solution of (15) is a tangent space trust region method (see,
e.g., [5, 6, 8, 20, 23]). For given X, in this variant the step ∆X = (∆F, ∆L, ∆V ) =
T (X)∆F + N(X) is decomposed into the tangential step T (X)∆F and the normal
step N(X), respectively. Here we define T (·) = (I, T1(·), T2(·)) ∈ L(IRnu×ny ,X ),
where I : IRnu×ny → IRnu×ny is the identity mapping and T1, T2 are given by

T1(·) := −H−1
L (·)HF (·), T2(·) := −G−1

V (·) (
GF (·)−GL(·)H−1

L (·)HF (·)) .

Moreover, N(·) =
(
0,−H−1

L (·)H(·),−G−1
V (·)(G(·)−GL(·)H−1

L (·)H(·))) ∈ X , where
0 is the zero matrix. Using [22, Lemma 4.1] the normal step N(·) can be determined
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as follows: First, compute (∆Ln, ∆V n) by solving the matrix equations

HL(X)∆Ln + H(X) = 0, GV (X)∆V n + GL(X)∆Ln + G(X) = 0,

and second, control the size of (∆Ln,∆V n) such that they stay inside the cur-
rent trust region. In this example, we compute the scalar β ∈ (0, 1] by β = 1
if ||(∆Ln,∆V n)|| ≤ ωδ, else β = (ωδ)/||(∆Ln, ∆V n)|| and set (∆Ln, ∆V n) =
β(∆Ln, ∆V n), where ω ∈ (0, 1) is a given scalar and δ > 0 denotes the current
trust region radius. The tangential component depends on ∆F and, thus, if ∆F
is known, we can compute (∆Lt, ∆V t) = (T1(·)∆F, T2(·)∆F ) as solutions of two
linear matrix equations

HL(X)∆Lt + HF (X)∆F = 0, GV (X)∆V t + GL(X)∆Lt + GF (X)∆F = 0. (16)

For computing ∆F we search a solution of the tangential trust region subproblem

min Ψ(∆F ) = 〈∆F, T ∗∇Φµ
X + T ∗∇2`µ

XXN〉+ 1
2 〈∆F, T ∗∇2`µ

XXT∆F 〉
||∆F || ≤ δ, Y (X + T (X)∆F + ∆Xn) º (1− σ)Y (X),

(17)

where ∇Φµ
X = (∇Φµ

F (X),∇Φµ
L(X),∇Φµ

V (X)) ∈ X , `µ = `µ(X, Kg,Kh), T and N
are the tangential and the normal operator, respectively, σ ∈ (0, 1) is given, ∆Xn =
(0, ∆Ln,∆V n) and X + T∆F + ∆Xn = (F + ∆F, L + T1∆F + ∆Ln, V + T2∆F +
∆V n). We apply the modified conjugate gradient (CG) algorithm as described
in [20, Algorithm 2.1] for finding an approximate solution ∆F of (17). This CG
approach has the following properties:

(i) It solves a reduced Newton–like equation in ∆F ; i. e. on exit, the solution ∆F
of (17) satisfies approximately the equation Ψ∆F = 0, e. g.

T ∗(X)∇2`µ
XX(·)T (X)∆F = −T ∗(X)(∇Φµ

X(X) +∇2`µ
XX(·)N(X)).

(ii) During each CG iteration, we compute a maximal scalar τ > 0 such that the
matrix inequality constraint in (17) is fulfilled. On exit it is guaranteed that
∆F stays inside the trust region and X +T (X)∆F +∆Xn satisfies the NSDP
constraint in (17).

(iii) In every CG iteration the operator T has to be applied. In particular, for
a given conjugate direction δFcg, we solve the first linear matrix equation in
(16) for ∆Lt (e. g. ∆Lt = T1(·)δFcg). Then we substitute this solution into
the second equation of (16) and solve it for ∆V t (e. g. ∆V t = T2(·)δFcg).

(iv) There are different ways in which the CG method can terminate: (a) A di-
rection of negative curvature is encountered in the CG iteration. In this case,
we follow this direction until reaching the boundary of the intersection of the
trust region and the NSDP–constraints. Then the resulting step is returned
as an approximate solution of (17). (b) The CG iterate has stepped outside of
the intersection of the trust region and the NSDP–constraints. In this case, we
backtrack to this region and return the resulting step as a solution of (17). (c)
The algorithm terminates with a pre–specified inexact termination criterion.
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The advantages of this strategy are: The CG–loop works only in the space of the
F–variable, which is in general much smaller as the abstract state space Sn × Sn,
where the variables (L, V ) lives in. There is no need for evaluating the Hessian of
the Lagrangian explicitly. We only need to evaluate it applied to a direction. On
exit, it is guaranteed that the matrix inequality is strictly satisfied. For given ∆F ,
the L– and V –part of the tangential component ∆Xt can be obtained by solving the
linear (matrix) equations in (16). Please note, the trust region method in IPCTR
uses a non–orthogonal decomposition of the step and the normal step is actually
a so–called quasi–normal step. If the operators HL and GV are ill–conditioned,
such steps can lead to poor performance of the method. In this case, the trust
region variant discussed in [8, Section 5.22] can be used alternatively. To keep the
quasi–normal step within the trust region the size factor β is introduced. If the
operators are ill–conditioned this may lead to a poor descent step compared to
Byrd–Omojukun steps, too. Here a simple dogleg modification in the space of L
and V could be used to overcome this problem. Finally, as shown in Wächter and
Biegler [29], barrier methods using the step to the boundary rule (which is included
in (17)) in combination with linearized equality constraints, can fail by ”crashing
into bounds”. Therefore, it seems that a breakdown may occur in IPCTR for some
”degenerated” NSDPs. But, we have tested IPCTR extensively on the COMPleib
benchmark library [19] which contains actually 171 test examples. For all test runs
we never observed a failure of IPCTR. In particular, for almost all COMPleib test
examples, IPCTR performs pretty good and very fast. Even if the operators HL and
GV are ill–conditioned, the performance of IPCTR was quite satisfactory. Moreover,
we never observed the Wächter and Biegler ”crashing into bounds”–phenomenon
during our test runs of IPCTR on COMPleib . A whole convergence analysis of
IPCTR is far beyond the scope of this paper. For more algorithmic details and
some convergence results, we refer the interested reader to [8], [20] and [22].

4 Numerical experiments
We conducted numerical experiments in computing linear SOF control laws for
several discretized parabolic PDE control systems. To clarify our approach let us
summarize the algorithmic steps:

1. solve the discrete dynamical system (9) of dimension nx for a chosen/nominal
control u, e.g., for u = 0 (uncontrolled dynamics) to get x(tj), j = 1, . . . , n
for a time grid in [0, T ];

2. define wj , j = 1, . . . , 2n, according to (3) and choose V1 or V2 as well as Ξ = U
or Ξ = W for (5);

3. compute the first ` POD basis functions by solving the eigenvalue problem
(7) and using (8);

4. apply a Galerkin ansatz for the PDE utilizing the computed ` POD basis
functions to derive a discrete dynamical system of the type (9), but with
dimension ` ¿ nx (low–dimensional model);
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5. neglect the nonlinear part G(x(t)) in (9) and solve SOF–H2 problem (12) to
get a linear SOF control law of the form (10), see Section 3;

6. fit this SOF control into the high–dimensional discrete dynamical system (9)
to obtain the closed–loop system

Eẋ(t) = (A + BFC + δA)x(t) + G(x(t)) + B1w̃(t), x(0) = x◦,

z(t) = (C1 + D1FC)x(t).

In step 5 we neglect the nonlinear part in (9) and compute the SOF control law
for the linear model. Alternatively, we linearize the nonlinear part instead of ne-
glecting G(x(t)). In some cases, this could lead to a poor performance of the SOF
controller, e. g. if G(x(t)) is highly nonlinear. For moderate nonlinear terms, the
linear SOF control law is a good feedback control for the nonlinear system, too. For
highly nonlinear models, it is likely that such a simple linear SOF controller can not
stabilize the unstable nonlinear system. In these cases, a nonlinear feedback should
be used.

The computational performance of this method is pretty fast. The main work
is the computation of the POD approximation of the large (nonlinear) system.
Typically, we reduce the size from several thousand variables to 5–10 variables in
the POD model. In this case, the corresponding NSDP (12) is a matrix optimization
problem with approximately 25 – 100 unknowns and, typically, IPCTR computes a
(local) solution of the small–sized NSDPs within some seconds on a DELL notebook.

4.1 Example (Linear convection–diffusion model)

The first example is a two dimensional model of a linear parabolic equation with
nu distributed control input functions in the domain Ω = [0, a] × [0, b], where a =
1, b = 1. The infinite dimensional control problem of the convection–diffusion model
is given by

vt = κ∆v − ε1(vξ + vη) + ε2v +
∑nu

i=1 ui(t)bi, in Ω, t > 0,
v(ξ, η; t) = 0, on ∂Ω, t > 0,
v(ξ, η, 0) = v0(ξ, η), in Ω,

(18)

for the unknown function v := v(ξ, η; t), (ξ, η) ∈ Ω, t > 0, where ∆ denotes the
Laplace operator, ε1, ε2 ≥ 0 are given constants, ∂Ω denotes the boundary of Ω,
κ > 0 is the diffusion coefficient, bi, i = 1, . . . , nu are given shape functions for the
control inputs u1, . . . , unu and v0(·) is the initial state in Ω at t = 0. After a spatial
finite difference discretization of (18) we end up with a linear control system of the
form (9) with E = I, δA ≡ 0, G(x(t)) ≡ 0 and nx = 3600 states. We choose nu = 2
and bi = χΩu

i
, i = 1, 2, where χΩu

i
denotes the characteristic function on the control

input domain Ωu
i ⊂ Ω of ui and

Ωu
1 = [0.1, 0.4]× [0.1, 0.4], Ωu

2 = [0.6, 0.9]× [0.7, 0.9].

Moreover, we set ny = 2 and measure the state on the observation domains Ωy
i ⊂

Ω, i = 1, 2 of y(t) = (y1(t), y2(t))T , where

Ωy
1 = [0.1, 0.4]× [0.5, 0.7], Ωy

2 = [0.6, 0.9]× [0.1, 0.4].
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Table 1. Parameter for Ex. 4.1

nx nu ny ` κ c1 d1 ε1 ε2

3600 2 2 7 0.06119 10 100 0.29555 2.9555

Hence, the data matrices B ∈ IRnx×nu , C ∈ IRny×nx only contain zeros and ones with
ones at grid points within the control input and observation domains, respectively.

Figure 1. Ex. 4.1 with SOF at t = 0.8, 2, 4, 8: POD with V1, Ξ = L2(Ω)
(left), V1, Ξ = H1(Ω) (right).
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Figure 2. SOF control (10) for Ex. 4.1: POD with V1, Ξ = L2(Ω) (left),
V1, Ξ = H1(Ω) (right).
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Table 1 lists the parameters that we have used in our numerical experiments.
Note, due to the choice of ε2 (see Table 1), the uncontrolled system is unstable. In
example, the real part of the largest eigenvalue of A is positive. Figure 1 shows
the state of the linear convection–diffusion model (18) if we use SOF control law
computed by IPCTR in combination with POD. We have computed the first ` = 7
POD basis functions utilizing the (discrete) L2–norm (left) as well as the discrete
H1–norm (right). This figure illustrates that the simple SOF controller stabilizes
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Figure 3. Ex. 4.1 with SOF at t = 0.8, 2, 4, 8: POD with V2, Ξ = L2(Ω)
(left), V2, Ξ = H1(Ω) (right).
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the unstable control system very well. The corresponding controller functions can
be found in Figure 2. The plots in Figure 3 shows the dynamical behavior of the
controlled model for the choice of a different snapshot ensemble. In particular,
for the computation of the POD basis function we only use every 10–th snapshot
and include the difference quotients in the snapshot ensemble. The corresponding

Figure 4. SOF control (10) for Ex. 4.1: POD with V2, Ξ = L2(Ω) (left),
V2, Ξ = H1(Ω) (right).
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control input functions are illustrated in Figure 4. On the other hand, Figure 5
visualizes the instability of this model. Moreover, Figure 6 illustrates the location
of the two sensor (red) and control (green) domains in Ω. It turns out that in case
of Ξ = L2(Ω) and V2 the SOF control has the best stability characteristics. For
Ξ = H1(Ω) we observe that there is no big difference if the time derivatives are
included in the snapshots or not.

4.2 Example (Nonlinear unstable heat equation)

Our next example deals with a two dimensional distributed control input model of
a nonlinear instable heat equation. In the domain Ω = [0, 1] × [0, 1] we consider
a initial boundary value problem of this nonlinear reaction–diffusion model for the
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Figure 5. Ex. 4.1 with no con-
trol at t = 0.8, 2, 4, 8.
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Figure 6. Ex. 4.1: Sensor and
control domains.
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unknown function v(ξ, η; t), (ξ, η) ∈ Ω, t > 0:

vt = κ∆v + ε2v − ε1v
3 +

∑nu

i=1 ui(t)bi, in Ω, t > 0,
v(ξ, η; t) = 0, on ∂Ω, t > 0,
v(ξ, η, 0) = v0(ξ, η), in Ω,

(19)

where ε1, ε2 ≥ 0 are positive constants and the other quantities are defined as in the

Figure 7. Ex. 4.2 with no con-
trol at t = 0.8, 2, 4, 8.
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Figure 8. Ex. 4.2: Sensor and
control domains.
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previous example. For ε1 = 0 and ε2 = 0, the open loop system of (19) is the heat
equation, which is asymptotically stable. However, it is unstable if ε2 > 0 is large
enough even if ε1 = 0. We use a back–stepping method for the finite difference semi–
discretized approximation of (19) (with uniform mesh size h = 0.01639 to ensure at
least a small error in the spatial approximation) which results in a nonlinear control
system of the form (9) with E = I, δA ≡ 0, G(x(t)) = −ε1x(t)3 and nx = 3600 state
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variables. Moreover, we assume that we have two fixed sensor (ny = 2) and two
fixed control (nu = 2) domains located in Ω. In particular, Figure 8 visualizes the

Table 2. Parameter for Ex. 4.2

nx nu ny ` κ c1 d1 ε1 ε2

3600 2 2 5 0.06119 100 10 1.0 2.5

Figure 9. Ex. 4.2 with SOF at t = 0.8, 2, 4, 8: POD with V1, Ξ = L2(Ω)
(left), V1, Ξ = H1(Ω) (right).
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Figure 10. SOF control (10) for Ex. 4.2: POD with V1, Ξ = L2(Ω) (left),
V1, Ξ = H1(Ω) (right).
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location of the two control (green) and sensor (red) domains in Ω, respectively. The
instability of the linear (e.g., ε1 = 0) uncontrolled model is illustrated in Figure 7.
In our numerical experiments for this nonlinear model we have used the parameters
in Table 2. For the computation of the low–dimensional POD approximation of
the nonlinear model, we use snapshots of the linearized unstable and uncontrolled
system as shown in Figure 7. In this case study we have computed the first ` = 5
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POD basis functions utilizing the (discrete) L2–norm as well as the discrete H1–
norm. Figure 9 shows the results of our experiments. Therein, we have plotted the
temperature distribution of the nonlinear model (19) if we use the SOF controller
computed by IPCTR in combination with POD. At t = 6, Figure 9 illustrates that

Figure 11. Ex. 4.2 with SOF at t = 0.8, 2, 4, 8: POD with V2, Ξ = L2(Ω)
(left), V2, Ξ = H1(Ω) (right).
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Figure 12. SOF control (10) for Ex. 4.2: POD with V2, Ξ = L2(Ω) (left),
V2, Ξ = H1(Ω) (right).
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the controlled dynamics are closer to zero with respect to the L2–norm than the
H1–norm POD approximation. The corresponding optimal output feedback control
functions acting on the control domains in Ω can be found in Figure 10. The plots
in Figure 11 contain the temperature distributions of the controlled nonlinear model
for the choice of a different snapshot ensemble. In particular, for the computation of
the POD basis function we only use every 10–th snapshot and include the difference
quotients in the snapshot ensemble. In this case, the temperature of the controlled
system tends faster to the stable equilibrium state at zero with respect to the H1–
norm and included difference quotient than for all the other POD approximations.
In this case, the output feedback control functions are given in Figure 12.
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4.3 Example (Modified Burgers’ equation)

Now we turn to our third example, where we consider the viscous modified Burgers
equation

vt − νvξξ + vvξ − εv = 0 in Q = (0, T )× Ω,

νv′(t, 0) = 0 for all t ∈ (0, T ),

νv′(t, 2π) = u for all t ∈ (0, T ),

v(0, ξ) = sin(ξ) for all ξ ∈ Ω = (0, 2π),

(20)

where ν = 0.5 denotes a viscosity parameter, T = 2 > 0 is the end time, u ∈ L2(0, T )
is the control input and ε = 0.125. In the context of feedback control for Burgers
equation with POD we refer to [2, 16], for instance.

There is only one control input acting on the right-end of the interval Ω. The
only measured information available to this control is the state at time t ∈ (0, T )
at ξ = 2π, i.e.,

y(t) = v(t, 2π) for all t ∈ (0, T ). (21)

As in the two previous examples, we can express (20)–(21) by a dynamical system
in an appropriate (infinite–dimensional) state space.

Figure 13. Ex. 4.3 with no control. Figure 14. Decay rates: t → |v(t, 2π)|
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The goal of our optimal control problem is to compute a SOF control law to
track the system to zero, i.e., to minimize the cost

J(v, u) =
1
2

∫ T

0

∫

Ω

|v(t, ξ)|2 + |vξ(t, ξ)|2 dξdt +
β

2

∫ T

0

|u(t)|2 dt,

where β = 10−6 is a fixed regularization parameter. Notice, that for every t ∈ (0, T )
there is only one observation and one control point. Thus, the control influence is
not too big and the SOF control law F is a real number.

For the finite element discretization we utilize the software Femlab, Ver-
sion 2.2, where we took linear Lagrange elements with 1258 degrees of freedom.
The uncontrolled dynamics are presented in Figure 13.
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Table 3. Parameters for Ex. 4.2

E(3) F J(v, u)
∫ T

0
|v(t, 2π)|dt

Ξ = L2, V1 99.95 % -2060.07 69.08 0.0006

Ξ = H1, V2 92.37 % -7536.10 69.12 0.0000

Ξ = L2, V1 99.38 % -2017.68 69.09 0.0006

Ξ = H1, V2 79.39 % -5657.58 69.06 0.0002

u = 0 — — 73.34 3.0109

Utilizing ` = 3 POD basis function we compute the SOF control law (10) and
solve the closed loop dynamics. Including more information into the snapshot set,
e.g., difference quotient or gradient norms, the value of E(`) decreases. In particular,
for the choices Ξ = H1(Ω) and V2 we have E(3) < 80 %. However, the damping of
t 7→ v(t, 2π) is better than for the choice V1, independent of Ξ, compare Figure 14.
Also the values of the SOF control law are quite different. The values for V1, i.e.,
without including the discrete time derivatives, are of the same magnitude, whereas
F is much greater if we take the ensemble V2. Due to the soft control input the
cost is only reduced by about 6 %.

5 Conclusions
In this article we consider the SOF problem for PDE constrained control problems in
combination with the POD reduction method for deriving a low dimensional control
system and the interior point trust region algorithm for solving the corresponding
low dimensional NSDP. The SOF control law can be constructed from the solution
of the low dimensional NSDP. In our numerical examples, we observe that this SOF
can be used for controlling the large dimensional PDE system. In particular, it
turns out that including the difference quotients into the POD snapshot ensemble
leads to better stability properties of the computed SOF control laws.
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